Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts.

نویسندگان

  • Shuo Liu
  • Yinsheng Wang
چکیده

Exogenous and endogenous sources of chemical species can react, directly or after metabolic activation, with DNA to yield DNA adducts. If not repaired, DNA adducts may compromise cellular functions by blocking DNA replication and/or inducing mutations. Unambiguous identification of the structures and accurate measurements of the levels of DNA adducts in cellular and tissue DNA constitute the first and important step towards understanding the biological consequences of these adducts. The advances in mass spectrometry (MS) instrumentation in the past 2-3 decades have rendered MS an important tool for structure elucidation, quantification, and revelation of the biological consequences of DNA adducts. In this review, we summarized the development of MS techniques on these fronts for DNA adduct analysis. We placed our emphasis of discussion on sample preparation, the combination of MS with gas chromatography- or liquid chromatography (LC)-based separation techniques for the quantitative measurement of DNA adducts, and the use of LC-MS along with molecular biology tools for understanding the human health consequences of DNA adducts. The applications of mass spectrometry-based DNA adduct analysis for predicting the therapeutic outcome of anti-cancer agents, for monitoring the human exposure to endogenous and environmental genotoxic agents, and for DNA repair studies were also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of a High-Resolution Mass-Spectrometry-Based DNA Adductomics Approach for Identification of DNA Adducts in Complex Mixtures

Liquid chromatography coupled with mass spectrometry (LC-MS) is the method of choice for analysis of covalent modification of DNA. DNA adductomics is an extension of this approach allowing for the screening for both known and unknown DNA adducts. In the research reported here, a new high-resolution/accurate mass MS(n) methodology has been developed representing an important advance for the inve...

متن کامل

DNA adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 4-aminobiphenyl are infrequently detected in human mammary tissue by liquid chromatography/tandem mass spectrometry.

Some epidemiological investigations have revealed that frequent consumption of well-done cooked meats and tobacco smoking are risk factors for breast cancer in women. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic aromatic amine that is formed in well-done cooked meat, and 4-aminobiphenyl (4-ABP) is an aromatic amine that arises in tobacco smoke and occurs as a contami...

متن کامل

Environmental Exposure of the Mouse Germ Line: DNA Adducts in Spermatozoa and Formation of De Novo Mutations during Spermatogenesis

BACKGROUND Spermatozoal DNA damage is associated with poor sperm quality, disturbed embryonic development and early embryonic loss, and some genetic diseases originate from paternal de novo mutations. We previously reported poor repair of bulky DNA-lesions in rodent testicular cells. METHODOLOGY/PRINCIPAL FINDINGS We studied the fate of DNA lesions in the male germ line. B[a]PDE-N(2)-dG adduc...

متن کامل

Improved preparation and identification of aristolochic acid-DNA adducts by solid-phase extraction with liquid chromatography-tandem mass spectrometry.

Aristolochic acid (AA) is a known nephrotoxin and potential carcinogen, which can form covalent DNA adducts after metabolic activation in vivo and in vitro. A simple method for preparation and characterization of aristolochic acid-DNA adducts was developed. Four AA-adducts were synthesized by a direct reaction of AAI/AAII with 2'-deoxynucleosides. The reaction mixture was first cleaned-up and p...

متن کامل

Urine Biomarkers of Risk in the Molecular Etiology of Breast Cancer

Endogenous estrogens can be bio-activated to endogenous carcinogens via formation of estrogen quinones. Estrogen-3,4-quinones react with DNA to form mutagenic depurinating estrogen-DNA adducts. The carcinogenicity of endogenous estrogens is related to unbalanced estrogen metabolism leading to excess estrogen quinones and formation of depurinating DNA adducts. The present studies were initiated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical Society reviews

دوره 44 21  شماره 

صفحات  -

تاریخ انتشار 2015