Attractors for a Non-linear Parabolic Equation Modelling Suspension Flows

نویسندگان

  • José M. Amigó
  • Isabelle Catto
  • José Valero
  • Miguel Sanjuan
چکیده

In this paper we prove the existence of a global attractor with respect to the weak topology of a suitable Banach space for a parabolic scalar differential equation describing a non-Newtonian flow. More precisely, we study a model proposed by Hébraud and Lequeux for concentrated suspensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Analysis of a Nonlinear Parabolic Equation Arising in the Modelling of Non-Newtonian Flows

The mathematical properties of a nonlinear parabolic equation arising in the modelling of non-newtonian flows are investigated. The peculiarity of this equation is that it may degenerate into a hyperbolic equation (in fact a linear advection equation). Depending on the initial data, at least two situations can be encountered: the equation may have a unique solution in a convenient class, or it ...

متن کامل

Attractors for Non-compact Autonomous and Non-autonomous Systems via Energy Equations

The energy equation approach used to prove the existence of the global attractor by establishing the so-called asymptotic compactness property of the semigroup is considered, and a general formulation that can handle a number of weakly damped hyperbolic equations and parabolic equations on either bounded or unbounded spatial domains is presented. A suitable extension of this approach to the exi...

متن کامل

A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS

Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...

متن کامل

Attractors for Non-compact Semigroups via Energy Equations

The energy equation approach used to prove the existence of the global attractor by establishing the so-called asymptotic compactness property of the semigroup is considered, and a general formulation that can handle a number of weakly damped hyperbolic equations and parabolic equations on either bounded or unbounded spatial domains is presented. As examples, three specific and physically relev...

متن کامل

Upper Semicontinuity of Pullback Attractors for Non-autonomous Generalized 2d Parabolic Equations

This paper is concerned with a generalized 2D parabolic equation with a nonautonomous perturbation −∆ut + α ∆ut + μ∆ u+∇ · −→ F (u) +B(u, u) = ǫg(x, t). Under some proper assumptions on the external force term g, the upper semicontinuity of pullback attractors is proved. More precisely, it is shown that the pullback attractor {Aǫ(t)}t∈R of the equation with ǫ > 0 converges to the global attract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008