System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes.
نویسندگان
چکیده
Elevated levels of extracellular glutamate cause excitotoxic oligodendrocyte cell death and contribute to progressive oligodendrocyte loss and demyelination in white matter disorders such as multiple sclerosis and periventricular leukomalacia. However, the mechanism by which glutamate homeostasis is altered in such conditions remains elusive. We show here that microglial cells, in their activated state, compromise glutamate homeostasis in cultured oligodendrocytes. Both activated and resting microglial cells release glutamate by the cystine-glutamate antiporter system xc-. In addition, activated microglial cells act to block glutamate transporters in oligodendrocytes, leading to a net increase in extracellular glutamate and subsequent oligodendrocyte death. The blocking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors or the system xc- antiporter prevented the oligodendrocyte injury produced by exposure to LPS-activated microglial cells in mixed glial cultures. In a whole-mount rat optic nerve, LPS exposure produced wide-spread oligodendrocyte injury that was prevented by AMPA/kainate receptor block and greatly reduced by a system xc- antiporter block. The cell death was typified by swelling and disruption of mitochondria, a feature that was not found in closely associated axonal mitochondria. Our results reveal a novel mechanism by which reactive microglia can contribute to altering glutamate homeostasis and to the pathogenesis of white matter disorders.
منابع مشابه
Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination.
T cell infiltration into the CNS is a significant underlying pathogenesis in autoimmune inflammatory demyelinating diseases. Several lines of evidence suggest that glutamate dysregulation in the CNS is an important consequence of immune cell infiltration in neuroinflammatory demyelinating diseases; yet, the causal link between inflammation and glutamate dysregulation is not well understood. A m...
متن کاملCOMPREHENSIVE INVITED REVIEW The Cystine/Glutamate Antiporter System xc - in Health and Disease: From Molecular Mechanisms to Novel Therapeutic Opportunities
The antiporter system xc imports the amino acid cystine, the oxidized form of cysteine, into cells with a 1:1 counter-transport of glutamate. It is composed of a light chain, xCT, and a heavy chain, 4F2 heavy chain (4F2hc), and, thus, belongs to the family of heterodimeric amino acid transporters. Cysteine is the rate-limiting substrate for the important antioxidant glutathione (GSH) and, along...
متن کاملHijacking microglial glutathione by inorganic arsenic impels bystander death of immature neurons through extracellular cystine/glutamate imbalance
Arsenic-induced altered microglial activity leads to neuronal death, but the causative mechanism remains unclear. The present study showed, arsenic-exposed (10 μM) microglial (N9) culture supernatant induced bystander death of neuro-2a (N2a), which was further validated with primary microglia and immature neuronal cultures. Results indicated that arsenic-induced GSH synthesis by N9 unfavorably ...
متن کاملAugmented cystine-glutamate exchange by pituitary adenylate cyclase-activating polypeptide signaling via the VPAC1 receptor.
In the central nervous system, cystine import in exchange for glutamate through system xc- is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc- activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating poly...
متن کاملNon-cell autonomous influence of the astrocyte system xc− on hypoglycaemic neuronal cell death
Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation) is initiated by glutamate extruded from astrocytes via system xc---an amino acid transporter that imports L-cystine and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 178 10 شماره
صفحات -
تاریخ انتشار 2007