Finding Forms of Flocking: Evolutionary Search in ABM Parameter-Spaces

نویسندگان

  • Forrest Stonedahl
  • Uri Wilensky
چکیده

While agent-based models (ABMs) are becoming increasingly popular for simulating complex and emergent phenomena in many fields, understanding and analyzing ABMs poses considerable challenges. ABM behavior often depends on many model parameters, and the task of exploring a model’s parameter space and discovering the impact of different parameter settings can be difficult and time-consuming. Exhaustively running the model with all combinations of parameter settings is generally infeasible, but judging behavior by varying one parameter at a time risks overlooking complex nonlinear interactions between parameters. Alternatively, we present a case study in computer-aided model exploration, demonstrating how evolutionary search algorithms can be used to probe for several qualitative behaviors (convergence, non-convergence, volatility, and the formation of vee shapes) in two different flocking models. We also introduce a new software tool (BehaviorSearch) for performing parameter search on ABMs created in the NetLogo modeling environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

Towards Emergent Design: Analysis, Fitness and Heterogeneity of Agent Based Models Using Geometry of Behavioral Spaces Framework

Detection and analysis of collective behavior in natural and artificial systems is a difficult task which is commonly delegated to a human observer. We present a statistical framework to automatically detect emergent, collective behavior of agents in agent based simulations which exhibit swarming and flocking behavior. Our tunable, transitional-, rotational, and scaleinvariant framework – geome...

متن کامل

Optimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods

In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...

متن کامل

On the Influence of Parameters in Particle Swarm Optimisation Algorithm for Job Shop Scheduling

Particle Swarm Optimization (PSO) is one of the latest nature inspired meta-heuristic algorithms based on the metaphor of social interaction and communication such as bird flocking and fish schooling. PSO is a population based algorithm for finding optimal regions of complex search spaces through interaction of individuals in the population. In PSO, a set of randomly generated solutions (initia...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010