The endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity.
نویسندگان
چکیده
Recent in vitro and in vivo studies have reported fluid shear stress-induced increases in endothelial layer hydraulic conductivity (L(p)) that are mediated by an increased production of nitric oxide (NO). Other recent studies have shown that NO induction by shear stress is mediated by the glycocalyx that decorates the surface of endothelial cells. Here we find that a selective depletion of the major components of the glycocalyx with enzymes can block the shear stress-induced response of L(p). Heparinase and hyaluronidase block shear-induced increases in L(p), which is consistent with their effects on NO production. But chondroitinase, which does not suppress shear-induced NO production, also inhibits shear-induced L(p). A further surprise is that treatment with the general proteolytic enzyme pronase does not suppress the shear L(p) response. We also find that heparinase does not alter baseline L(p) significantly, whereas chondroitinase, hyaluronidase, and pronase increase it significantly.
منابع مشابه
High Glucose Attenuates Shear-Induced Changes in Endothelial Hydraulic Conductivity by Degrading the Glycocalyx
Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localize...
متن کاملHeparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species.
We investigated the nonlinear dynamics of the pressure vs. hydraulic conductivity (L(p)) relationship in lung microvascular endothelial cells and demonstrate that heparan sulfates, an important component of the endothelial glycocalyx, participate in pressure-sensitive mechanotransduction that results in barrier dysfunction. The pressure vs. L(p) relationship was complex, possessing both time- a...
متن کاملCapillary tone: cyclooxygenase, shear stress, luminal glycocalyx, and hydraulic conductivity (Lp)
Control of capillary hydraulic conductivity (Lp) is the physiological mechanism that underpins systemic hydration. Capillaries form the largest surface of endothelial cells in any species with a cardiovascular system and all capillaries are exposed to the flow-induced force, shear stress (τ). Vasoactive molecules such as prostacyclin (cyclooxygenase product, COX) are released from endothelial c...
متن کاملOligosaccharide model of the vascular endothelial glycocalyx in physiological flow
Experiments have consistently revealed the pivotal role of the endothelial glycocalyx layer in vasoregulation and the layer's contribution to mechanotransduction pathways. However, the exact mechanism by which the glycocalyx mediates fluid shear stress remains elusive. This study employs atomic-scale molecular simulations with the aim of investigating the conformational and orientation properti...
متن کاملEffect of pressure on hydraulic conductivity of endothelial monolayers: role of endothelial cleft shear stress.
Significant changes in transvascular pressure occur in pulmonary hypertension, microgravity, and many other physiological and pathophysiological circumstances. Using bovine aortic endothelial cells grown on porous, rigid supports, we demonstrate that step changes in transmural pressure of 10, 20, and 30 cmH(2)O induce significant elevations in endothelial hydraulic conductivity (L(p)) that requ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 296 5 شماره
صفحات -
تاریخ انتشار 2009