Tetramethyleneethane Equivalents: Recursive Reagents for Serialized Cycloadditions.
نویسندگان
چکیده
New reactions and reagents that allow for multiple bond-forming events per synthetic operation are required to achieve structural complexity and thus value with step-, time-, cost-, and waste-economy. Here we report a new class of reagents that function like tetramethyleneethane (TME), allowing for back-to-back [4 + 2] cycloadditions, thereby amplifying the complexity-increasing benefits of Diels-Alder and metal-catalyzed cycloadditions. The parent recursive reagent, 2,3-dimethylene-4-trimethylsilylbutan-1-ol (DMTB), is readily available from the metathesis of ethylene and THP-protected 4-trimethylsilylbutyn-1-ol. DMTB and related reagents engage diverse dienophiles in an initial Diels-Alder or metal-catalyzed [4 + 2] cycloaddition, triggering a subsequent vinylogous Peterson elimination that recursively generates a new diene for a second cycloaddition. Overall, this multicomponent catalytic cascade produces in one operation carbo- and heterobicyclic building blocks for the synthesis of a variety of natural products, therapeutic leads, imaging agents, and materials. Its application to the three step synthesis of a new solvatochromic fluorophore, N-ethyl(6-N,N-dimethylaminoanthracene-2,3-dicarboximide) (6-DMA), and the photophysical characterization of this fluorophore are described.
منابع مشابه
Propargyltrimethylsilanes as Allene Equivalents in Transition Metal-Catalyzed [5 + 2] Cycloadditions
Conventional allenes have not been effective π-reactive 2-carbon components in many intermolecular cycloadditions including metal-catalyzed [5 + 2] cycloadditions. We report herein that rhodium-catalyzed [5 + 2] cycloadditions of propargyltrimethylsilanes and vinylcyclopropanes provide, after in situ protodesilylation, a highly efficient route to formal allene cycloadducts. Propargyltrimethylsi...
متن کاملModeling the kinetics of acylation of insulin using a recursive method for solving the systems of coupled differential equations.
This paper describes a theoretical method for solving systems of coupled differential equations that describe the kinetics of complicated reaction networks in which a molecule having multiple reaction sites reacts irreversibly with multiple equivalents of a ligand (reagent). The members of the network differ in the number of equivalents of reagent that have reacted, and in the patterns of sites...
متن کاملStructural Complexity Through Multicomponent Cycloaddition Cascades Enabled by Dual-Purpose, Reactivity Regenerating 1,2,3-Triene Equivalents
Multicomponent reactions allow for more bond-forming events per synthetic operation, enabling more step- and time-economical conversion of simple starting materials to complex and thus value-added targets. These processes invariably require that reactivity be relayed from intermediate to intermediate over several mechanistic steps until a termination event produces the final product. Here, we r...
متن کاملInvestigation on the effect of trifluoromethyl group on the [3+2] cycloadditions of thiocarbonyl S-methanides with α, β-unsaturated ketones: A theoretical study using DFT
A [3+2] cycloaddition (32CA) reaction among a thiocarbonyl ylide (TCY 2) with (E)-4,4,4-trifluoro-4-phenylbut-3-en-2-one (TFB 4) as an electron-deficient enone in tetrahydrofuran (THF) were studied within the Molecular Electron Density Theory (MEDT), at the DFT-B3LYP/6-31G(d) computational level to analysis energetics, selectivities, and mechanistic aspects. The reaction can progress in four co...
متن کاملCyclooctyne-based reagents for uncatalyzed click chemistry: A computational survey.
With the goal of identifying alkyne-like reagents for use in click chemistry, but without Cu catalysts, we used B3LYP density function theory (DFT) to investigate the trends in activation barriers for the 1,3-dipolar cycloadditions of azides with various cyclooctyne, dibenzocyclooctyne, and azacyclooctyne compounds. Based on these trends, we find monobenzocyclooctyne-based reagents that are pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 137 28 شماره
صفحات -
تاریخ انتشار 2015