A preconditioner for Krylov subspace method using a sparse direct solver in biochemistry applications

نویسندگان

  • M. Okada
  • T. Sakurai
  • K. Teranishi
چکیده

We consider solution of sparse linear systems that arise from generalized eigenvalue problems for molecular orbital calculation of the biochemistry application [2]. This application predicts the reaction and properties of proteins in water molecules through the orbital of molecules indicated by the status of electron distribution. The prediction of the electron distribution requires to obtain a large portion of the eigenpairs in the following generalized eigenvalue problems:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Multigrid Preconditioners for Bi-cgstab for the Sparse-grid Solution of High-dimensional Anisotropic Diffusion Equation

Robust and efficient solution techniques are developed for high-dimensional parabolic partial differential equations (PDEs). Presented is a solver based on the Krylov subspace method Bi-CGSTAB preconditioned with d-multigrid. Developing the perfect multigrid method, as a stand-alone solver for a single problem discretized on a particular grid, often requires a lot of optimal tuning and expert i...

متن کامل

Accelerating Preconditioned Iterative Linear Solvers on Gpu

Linear systems are required to solve in many scientific applications and the solution of these systems often dominates the total running time. In this paper, we introduce our work on developing parallel linear solvers and preconditioners for solving large sparse linear systems using NVIDIA GPUs. We develop a new sparse matrix-vector multiplication kernel and a sparse BLAS library for GPUs. Base...

متن کامل

An Efficient and Effective Nonlinear Solver in a Parallel Software for Large Scale Petroleum Reservoir Simulation

We study a parallel Newton-Krylov-Schwarz (NKS) based algorithm for solving large sparse systems resulting from a fully implicit discretization of partial differential equations arising from petroleum reservoir simulations. Our NKS algorithm is designed by combining an inexact Newton method with a rank-2 updated quasi-Newton method. In order to improve the computational efficiency, both DDM and...

متن کامل

Short-Term Recurrence Krylov Subspace Methods for Nearly Hermitian Matrices

The Progressive GMRES algorithm, introduced by Beckermann and Reichel in 2008, is a residual-minimizing short-recurrence Krylov subspace method for solving a linear system in which the coefficient matrix has a low-rank skew-Hermitian part. We analyze this algorithm, observing a critical instability that makes the method unsuitable for some problems. To work around this issue we introduce a diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007