Generators for the Tautological Algebra of the Moduli Space of Curves

نویسنده

  • SHIGEYUKI MORITA
چکیده

In this paper, we prove that the tautological algebra in cohomology of the moduli space Mg of smooth projective curves of genus g is generated by the first [g/3] Mumford-Morita-Miller classes. This solves a part of Faber’s conjecture [5] concerning the structure of the tautological algebra affirmatively. More precisely, for any k we express the k-th Mumford-Morita-Miller class ek as an explicit polynomial in the lower classes for all genera g = 3k−1, 3k−2, · · · , 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Picard Group of Moduli of Hyperelliptic Curves

The main subject of this work is the difference between the coarse moduli space and the stack of hyperelliptic curves. We compute their Picard groups, giving explicit description of the generators. We get an application to the non-existence of a tautological family over the coarse moduli space.

متن کامل

Tautological Relations on the Stable Map Spaces

The cohomology of the spaces of rational stable maps to flag varieties is generated by tautological classes. We study relations between the tautological generators. We conjecture that all relations between these generators are tautological, i.e. they are essentially obtained from Keel’s relations onM0,n with the aid of the pushforwards by the natural morphisms. We check this claim on the open p...

متن کامل

Weierstrass Cycles and Tautological Rings in Various Moduli Spaces of Algebraic Curves

We analyze Weierstrass cycles and tautological rings in moduli spaces of smooth algebraic curves and in moduli spaces of integral algebraic curves with embedded disks with special attention to moduli spaces of curves having genus ≤ 6. In particular, we show that our general formula gives a good estimate for the dimension of Weierstrass cycles for low genera.

متن کامل

The Moduli Space of Curves and Its Tautological Ring

The moduli space of curves has proven itself a central object in geometry. The past decade has seen substantial progress in understanding the moduli space of curves, involving ideas, for example, from geometry (algebraic, symplectic, and differential), physics, topology, and combinatorics. Many of the new ideas are related to the tautological ring of the moduli space, a subring of the cohomolog...

متن کامل

The Tropicalization of the Moduli Space of Curves

We show that the skeleton of the Deligne-MumfordKnudsen moduli stack of stable curves is naturally identified with the moduli space of extended tropical curves, and that this is compatible with the “naive” set-theoretic tropicalization map. The proof passes through general structure results on the skeleton of a toroidal Deligne-Mumford stack. Furthermore, we construct tautological forgetful, cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001