Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic constraints
نویسندگان
چکیده
This paper investigates the search performances of various meta-heuristics (MHs) for solving truss mass minimisation with dynamic constraints. Several established MHs were used to solve five truss optimisation problems. The results obtained from using the various MHs were statistically compared based upon convergence rate and consistency. It was found that the best optimisers for this design task are evolution strategy with covariance matrix adaptation (CMAES) and differential evolution (DE). Furthermore, the best penalty function technique was discovered while four penalty function techniques assigned with several parameter settings were used in combination with the five best optimisers to solve the truss optimisation problems. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
OPTIMAL SIZE AND GEOMETRY DESIGN OF TRUSS STRUCTURES UTILIZING SEVEN META-HEURISTIC ALGORITHMS: A COMPARATIVE STUDY
Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algori...
متن کاملTruss Optimization with Natural Frequency Constraints Using a Dolphin Echolocation Algorithm
Dynamic response of a structure is a remarkable characteristic which can be optimized (controlled) by imposing constraints on natural frequencies. But it is mentionable that size and shape optimization of trusses with multiple frequency constraints is a very non-linear and non-convex problem that may be converged to local optima when using meta-heuristic algorithms. To concur this problem, rese...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملTHE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN OPTIMAL DESIGN OF TRUSSES USING METAHEURISTIC ALGORITHMS
Although Genetic algorithm (GA), Ant colony (AC) and Particle swarm optimization algorithm (PSO) have already been extended to various types of engineering problems, the effects of initial sampling beside constraints in the efficiency of algorithms, is still an interesting field. In this paper we show that, initial sampling with a special series of constraints play an important role in the conv...
متن کاملA Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses
In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in Engineering Software
دوره 75 شماره
صفحات -
تاریخ انتشار 2014