Molecular approaches to the treatment, prophylaxis, and diagnosis of Alzheimer's disease: possible involvement of HRD1, a novel molecule related to endoplasmic reticulum stress, in Alzheimer's disease.
نویسندگان
چکیده
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protective mechanism against ER stress in which unfolded proteins accumulated in the ER are selectively transported to the cytosol for degradation by the ubiquitin-proteasome system. We cloned the novel ubiquitin ligase HRD1, which is involved in ERAD, and showed that HRD1 promoted amyloid precursor protein (APP) ubiquitination and degradation, resulting in decreased generation of amyloid β (Aβ). In addition, suppression of HRD1 expression caused APP accumulation and promoted Aβ generation associated with ER stress and apoptosis. Interestingly, HRD1 levels were significantly decreased in the cerebral cortex of patients with Alzheimer's disease (AD), and the brains of these patients experienced ER stress. Our recent study revealed that this decrease in HRD1 was due to its insolubilization; however, controversy persists about whether the decrease in HRD1 protein promotes Aβ generation or whether Aβ neurotoxicity causes the decrease in HRD1 protein levels. Here, we review current findings on the mechanism of HRD1 protein loss in the AD brain and the involvement of HRD1 in the pathogenesis of AD. Furthermore, we propose that HRD1 may be a target for novel AD therapeutics.
منابع مشابه
Effects of Oxidative Stress on the Solubility of HRD1, a Ubiquitin Ligase Implicated in Alzheimer’s Disease
The E3 ubiquitin ligase HRD1 is found in the endoplasmic reticulum membrane of brain neurons and is involved in endoplasmic reticulum-associated degradation. We previously demonstrated that suppression of HRD1 expression in neurons causes accumulation of amyloid precursor protein, resulting in amyloid β production associated with endoplasmic reticulum stress and apoptosis. Furthermore, HRD1 lev...
متن کاملThe recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review
Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...
متن کاملThe recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review
Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...
متن کاملP135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease
Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms. Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...
متن کاملNeuroprotection by Endoplasmic Reticulum Stress-Induced HRD1 and Chaperones: Possible Therapeutic Targets for Alzheimer’s and Parkinson’s Disease
Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders with a severe medical and social impact. Further insights from clinical and scientific studies are essential to develop effective therapies. Various stresses on the endoplasmic reticulum (ER) cause unfolded/misfolded proteins to aggregate, initiating unfolded protein responses (UPR), one of which is the induct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of pharmacological sciences
دوره 118 3 شماره
صفحات -
تاریخ انتشار 2012