Syn5 RNA polymerase synthesizes precise run-off RNA products

نویسندگان

  • Bin Zhu
  • Stanley Tabor
  • Charles C. Richardson
چکیده

The enzyme predominantly used for in vitro run-off RNA synthesis is bacteriophage T7 RNA polymerase. T7 RNA polymerase synthesizes, in addition to run-off products of precise length, transcripts with an additional non-base-paired nucleotide at the 3'-terminus (N+1 product). This contaminating product is extremely difficult to remove. We recently characterized the single-subunit RNA polymerase from marine cyanophage Syn5 and identified its promoter sequence. This marine enzyme catalyses RNA synthesis over a wider range of temperature and salinity than does T7 RNA polymerase. Its processivity is >30,000 nt without significant intermediate products. The requirement for the initiating nucleotide at the promoter is less stringent for Syn5 RNA polymerase as compared to T7 RNA polymerase. A major difference is the precise run-off transcripts with homogeneous 3'-termini synthesized by Syn5 RNA polymerase. Therefore, the enzyme is advantageous for the production of RNAs that require precise 3'-termini, such as tRNAs and RNA fragments that are used for subsequent assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of 2′-Fluoro RNA by Syn5 RNA polymerase

The substitution of 2'-fluoro for 2'-hydroxyl moieties in RNA substantially improves the stability of RNA. RNA stability is a major issue in RNA research and applications involving RNA. We report that the RNA polymerase from the marine cyanophage Syn5 has an intrinsic low discrimination against the incorporation of 2'-fluoro dNMPs during transcription elongation. The presence of both magnesium ...

متن کامل

Probing the sequence and structure of in vitro synthesized antisense and target RNAs from the replication control system of plasmid pMV158.

Antisense RNAII is a replication control element encoded by promiscuous plasmid pMV158. RNAII binds to its complementary sequence in the copG-repB mRNA, thus inhibiting translation of the replication initiator repB gene. In order to initiate the biochemical characterization of the pMV158 antisense RNA-mediated control system, conditions for in vitro transcription by T7RNA polymerase were set up...

متن کامل

Two RNA polymerase complexes from vesicular stomatitis virus-infected cells that carry out transcription and replication of genome RNA.

By immunoaffinity column chromatography, we have purified two RNA polymerase complexes, the transcriptase and replicase, from vesicular stomatitis virus-infected baby hamster kidney cells. The transcriptase is a multiprotein complex, containing the virus-encoded RNA polymerase L and P proteins, and two cellular proteins, translation elongation factor-1alpha and heat-shock protein 60. In additio...

متن کامل

Survey and summary: transcription by RNA polymerases I and III.

The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the proce...

متن کامل

In vitro synthesis of ribosomal RNA by Bacillus subtilis RNA polymerase.

Two kinds of hybridization competition experiments show that Bacillus subtilis RNA polymerase synthesizes ribosomal RNA (rRNA) in vitro with B. subtilis DNA as a template. First, RNA synthesized in vitro competes with the hybridization of [(32)P]rRNA synthesized in vivo to the heavy strand of B. subtilis DNA. Second, unlabeled rRNA synthesized in vivo competes with the hybridization of [(3)H]RN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014