Boundary correlation function of fixed-to-free bcc operators in square-lattice Ising model
نویسنده
چکیده
Abstract. We calculate the boundary correlation function of fixed-to-free boundary condition changing operators in the square-lattice Ising model. The correlation function is expressed in four different ways using 2×2 block Toeplitz determinants. We show that these can be transformed into a scalar Toeplitz determinant when the size of the matrix is even. To know the asymptotic behavior of the correlation function at large distance we calculate the asymptotic behavior of this scalar Toeplitz determinant using the Szegö’s theorem and the Fisher-Hartwig theorem. At the critical temperature we confirm the power-law behavior of the correlation function predicted by conformal field theory.
منابع مشابه
Magnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملOn Duality of Two-dimensional Ising Model on Finite Lattice
It is shown that the partition function of the 2d Ising model on the dual finite lattice with periodical boundary conditions is expressed through some specific combination of the partition functions of the model on the torus with corresponding boundary conditions. The generalization of the duality relations for the nonhomogeneous case is given. These relations are proved for the weakly nonhomog...
متن کاملExact Solution of the Ising Model on the Square Lattice with Free Boundary Conditions
The square-lattice Ising model is the simplest system showing phase transitions (the transition between the paramagnetic phase and the ferromagnetic phase and the transition between the paramagnetic phase and the antiferromagnetic phase) and critical phenomena at finite temperatures. The exact solution of the squarelattice Ising model with free boundary conditions is not known for systems of ar...
متن کاملExact Solution of the Ising Model on the 15 X 15 Square Lattice with Free Boundary Conditions
The square-lattice Ising model is the simplest system showing phase transitions (the transition between the paramagnetic phase and the ferromagnetic phase and the transition between the paramagnetic phase and the antiferromagnetic phase) and critical phenomena at finite temperatures. The exact solution of the squarelattice Ising model with free boundary conditions is not known for systems of ar...
متن کاملFinite-size corrections in the Ising model with special boundary conditions
The Ising model in two dimensions with the special boundary conditions of Brascamp and Kunz (BK) is analyzed. We derive exact finite-size corrections for the free energy F of the critical ferromagnetic Ising model on the M ×N square lattice with Brascamp–Kunz boundary conditions [H.J. Brascamp, H. Kunz, J. Math. Phys. 15 (1974) 66]. We show that finite-size corrections strongly depend not only ...
متن کامل