The discretizable molecular distance geometry problem is easier on proteins

نویسندگان

  • Leo Liberti
  • Carlile Lavor
  • Antonio Mucherino
چکیده

Distance geometry methods are used to turn a set of interatomic distances given by NMR experiments into a consistent molecular conformation. In a set of papers (see the survey [8]) we proposed a Branch-and-Prune (BP) algorithm for computing the set X of all incongruent embeddings of a given protein backbone. Although BP has a worst-case exponential running time in general, we always noticed a linear-like behaviour in computational experiments. In this paper we provide a theoretical explanation to our observations. We show that the BP is fixed-parameter tractable on protein-like graphs, and empirically show that the parameter is constant on a set of proteins from the Protein Data Bank.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Clifford Algebra approach to the Discretizable Molecular Distance Geometry Problem

The Discretizable Molecular Distance Geometry Problem (DMDGP) consists in a subclass of the Molecular Distance Geometry Problem for which an embedding in R can be found using a Branch & Prune (BP) algorithm in a discrete search space. We propose a Clifford Algebra model of the DMDGP with an accompanying version of the BP algorithm.

متن کامل

On the Number of Solutions of the Discretizable Molecular Distance Geometry Problem

The Generalized Discretizable Molecular Distance Geometry Problem is a distance geometry problems that can be solved by a combinatorial algorithm called “Branch-and-Prune”. It was observed empirically that the number of solutions of YES instances is always a power of two. We give a proof that this event happens with probability one.

متن کامل

The discretizable distance geometry problem

We introduce the Discretizable Distance Geometry Problem in R (DDGP3), which consists in a subclass of instances of the Distance Geometry Problem for which an embedding in R can be found by means of a discrete search. We show that the DDGP3 is a generalization of the Discretizable Molecular Distance Geometry Problem (DMDGP), and we discuss the main differences between the two problems. We prove...

متن کامل

Recent advances on the Discretizable Molecular Distance Geometry Problem

The Molecular Distance Geometry Problem (MDGP) consists in finding an embedding in R of a nonnegatively weighted simple undirected graph with the property that the Euclidean distances between embedded adjacent vertices must be the same as the corresponding edge weights. The Discretizable Molecular Distance Geometry Problem (DMDGP) is a particular subset of the MDGP which can be solved using a d...

متن کامل

An exponential algorithm for the Discretizable Molecular Distance Geometry Problem is polynomial on proteins

An important application of distance geometry to biochemistry studies the embeddings of the vertices of a weighted graph in the three-dimensional Euclidean space such that the edge weights are equal to the Euclidean distances between corresponding point pairs. When the graph represents the backbone of a protein, one can exploit the natural vertex order to show that the search space for feasible...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012