Strong analyticity of partly filled-in composite Julia sets

نویسندگان

  • Maciej Klimek
  • Marta Kosek
چکیده

It is shown that a composite Julia set generated by an infinite array of polynomial mappings is strongly analytic when regarded as a multifunction of the generating maps. An example of such a multifunction, the values of which have Hölder Continuity Property, is constructed. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fekete Polynomials and Shapes of Julia Sets

We prove that a nonempty, proper subset S of the complex plane can be approximated in a strong sense by polynomial filled Julia sets if and only if S is bounded and Ĉ \ int(S) is connected. The proof that such a set is approximable by filled Julia sets is constructive and relies on Fekete polynomials. Illustrative examples are presented. We also prove an estimate for the rate of approximation i...

متن کامل

Computability of Julia Sets

In this paper we settle most of the open questions on algorithmic computability of Julia sets. In particular, we present an algorithm for constructing quadratics whose Julia sets are uncomputable. We also show that a filled Julia set of a polynomial is always computable.

متن کامل

Filled Julia sets with empty interior are computable

We show that if a polynomial filled Julia set has empty interior, then it is computable.

متن کامل

On a solution to display non-filled-in quaternionic Julia sets

During early 1980s, the so-called ‘escape time’ method, developed to display the Julia sets for complex dynamical systems, was exported to quaternions in order to draw analogous pictures in this wider numerical field. Despite of the fine results in the complex plane, where all topological configurations of Julia sets have been successfully displayed, the ‘escape time’ method fails to render pro...

متن کامل

Julia Sets of Perturbed Quadratic Maps Converging to the Filled Basilica

In this paper we investigate singularly perturbed complex quadratic polynomial maps of the form Fλ(z) = z 2 − 1 + λ z2 . We prove that for parameter values λ ∈ R as λ → 0 the Julia set of Fλ(z) converges to the filled basilica when λ 6= 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004