An RGB-D based image set classification for robust face recognition from Kinect data
نویسندگان
چکیده
The paper proposes a method for robust face recognition from low quality Kinect acquired images which have a wide range of variations in head pose, illumination, facial expressions, sunglass disguise and occlusions by hand. Multiple Kinect images of a person are considered as an image set and face recognition from these images is formulated as an RGB-D image set classification problem. The Kinect acquired raw depth data is used for pose estimation and an automatic cropping of the face region. Based upon the estimated poses, the face images of a set are divided into multiple image subsets. An efficient block based covariance matrix representation is proposed to model images in an image subset on Riemannian manifold (Lie group). For classification, SVM models are separately learnt for each image subset on the Lie group of Riemannian manifold and a fusion strategy is introduced to combine results from all image subsets. The proposed technique has been evaluated on a combination of three large data sets containing over 35,000 RGB-D images under challenging conditions. The proposed RGB-D based image set classification incurs low computational cost and achieves an identification rate as high as 99.5%.
منابع مشابه
Face Recognition by 3D Registration for the Visually Impaired Using a RGB-D Sensor
To help visually impaired people recognize people in their daily life, a 3D face feature registration approach is proposed with a RGB-D sensor. Compared to 2D face recognition methods, 3D data based approaches are more robust to the influence of face orientations and illumination changes. Different from most 3D data based methods, we employ a one-step ICP registration approach that is much less...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملAn Efficient LBP-Based Descriptor for Facial Depth Images Applied to Gender Recognition Using RGB-D Face Data
RGB-D is a powerful source of data providing the aligned depth information which has great potentials in improving the performance of various problems in image understanding, while Local Binary Patterns (LBP) have shown excellent results in representing faces. In this paper, we propose a novel efficient LBP-based descriptor, namely Gradient-LBP (G-LBP), specialized to encode the facial depth in...
متن کاملAccurate and robust face recognition from RGB-D images with a deep learning approach
Face recognition from RGB-D images utilizes 2 complementary types of image data, i.e. colour and depth images, to achieve more accurate recognition. In this paper, we propose a face recognition system based on deep learning, which can be used to verify and identify a subject from the colour and depth face images captured with a consumer-level RGB-D camera. To recognize faces with colour and dep...
متن کاملRGB-D Face Recognition System Verification Using Kinect And FRAV3D Databases
This paper deals with a facial recognition system and its verification using the RGB-D data obtained from the Kinect and FRAV3D database. The FRAV3D database contains 106 subjects, which involves approximately one woman after every three men. The Kinect database has17 images per 31 persons. The proposed algorithm computes a descriptor based on the entropy of RGB-D faces along with the saliency ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 171 شماره
صفحات -
تاریخ انتشار 2016