Improving label fusion in multi-atlas based segmentation by locally combining atlas selection and performance estimation

نویسندگان

  • Thomas R. Langerak
  • Uulke A. van der Heide
  • Alexis N. T. J. Kotte
  • Floris F. Berendsen
  • Josien P. W. Pluim
چکیده

In multi-atlas based segmentation, a target image is segmented by registering multiple atlas images to this target image and propagating the corresponding atlas segmentations. These propagated segmentations are then combined into a single segmentation in a process called label fusion. Multi-atlas based segmentation is a segmentation method that allows fully automatic segmentation of image populations that exhibit a large variability in shape and image quality. Fusing the results of multiple atlases makes this technique robust and reliable. Previously, we have presented the SIMPLE method for label fusion and have shown that it outperforms existing methods. However, the downside of this method is its computation time and the fact that it requires a large atlas set. This is not always a problem, but in some cases segmentation may be time-critical or large atlas sets are not available. This paper presents a new label fusion method which is a local version of the SIMPLE method that has two advantages: when a large atlas set is available it improves the accuracy of label fusion and when this is not the case it gives the same accuracy as the original SIMPLE method, but with considerably fewer atlases. This is made possible by better utilizing the local information contained in propagated segmentations that would otherwise be discarded. Our method (semi-)automatically divides the propagated segmentations in multiple regions. A label fusion process can then be applied to each of these regions separately and the end result can be reconstructed out of multiple partial results. We demonstrate that the number of atlases needed can be reduced to 20 atlases without compromising segmentation quality. Our method is validated in an application to segmentation of the prostate, using an atlas set of 125 manually segmented images. 2014 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion

Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopt...

متن کامل

Automatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion

. . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Manual image segmentation 2.2 Automatic image segmentation 2.3 Multi-atlas image segmentation 2.4 Label Fusion 2.5 Atlas selection 2.6 Automatic Optimum Atlas Selection (OAS) 3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Shape-constrained multi-atlas based segmentation with multichannel registration

Multi-atlas based segmentation methods have recently attracted much attention in medical image segmentation. The multi-atlas based segmentation methods typically consist of three steps, including image registration, label propagation, and label fusion. Most of the recent studies devote to improving the label fusion step and adopt a typical image registration method for registering atlases to th...

متن کامل

Multi-atlas segmentation with augmented features for cardiac MR images

Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods ...

متن کامل

Neural Multi-Atlas Label Fusion: Application to Cardiac MR Images

Multi-atlas segmentation approach is one of the most widely-used image segmentation techniques in biomedical applications. There are two major challenges in this category of methods, i.e., atlas selection and label fusion. In this paper, we propose a novel multi-atlas segmentation method that formulates multi-atlas segmentation in a deep learning framework for better solving these challenges. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 130  شماره 

صفحات  -

تاریخ انتشار 2015