Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle.
نویسندگان
چکیده
Ca2+-activated K+ channels from rat muscle transverse tubule membranes were inserted into planar phospholipid bilayers, and the activation of these channels by Ca2+ was studied. On the cytoplasmic side of the channel, calcium ions (in the range 10-100 mumol l-1) increase the opening probability of the channel in a graded way. This 'activation curve' is sigmoid, with an average Hill coefficient of about 2. Magnesium ions, in the range 1-10 mmol l-1, increase the apparent affinity of the channel for Ca2+ and greatly enhance the sigmoidicity of the Ca2+ activation curve. In the presence of 10 mmol l-1 Mg2+, the Hill coefficient for Ca2+ activation is about 4.5. This effect depends upon Mg2+ concentration but not upon applied voltage. Mg2+ is effective only when added to the cytoplasmic side of the channel. The results argue that this high-conductance, Ca2+-activated K+ channel contains at least six Ca2+-binding sites involved in the activation process.
منابع مشابه
Unitary Ca2+ Current through Mammalian Cardiac and Amphibian Skeletal Muscle Ryanodine Receptor Channels under Near-physiological Ionic Conditions
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00 and 4.07 pA, respectively, and not signi...
متن کاملHighlights from the Literature
Question: Do Mg2+ and Ca2+ work through functionally similar mechanisms to activate BK channels? Background: BK channels are large conductance Ca2+ and voltage-activated K+ channels, which allow K+ to leave the cytoplasm and promote membrane hyperpolarization under physiological conditions when activated by membrane potential and/or intracellular Ca2+. In addition to these two primary signals, ...
متن کاملGating Kinetics of Single Large-Conductance Ca2+-Activated K+ Channels in High Ca2+ Suggest a Two-Tiered Allosteric Gating Mechanism✪
The Ca2+-dependent gating mechanism of large-conductance calcium-activated K+ (BK) channels from cultured rat skeletal muscle was examined from low (4 microM) to high (1,024 microM) intracellular concentrations of calcium (Ca2+i) using single-channel recording. Open probability (Po) increased with increasing Ca2+i (K0. 5 11.2 +/- 0.3 microM at +30 mV, Hill coefficient of 3.5 +/- 0.3), reaching ...
متن کاملKinetic Structure of Large-Conductance Ca2+-activated K+ Channels Suggests that the Gating Includes Transitions through Intermediate or Secondary States
Mechanisms for the Ca2+-dependent gating of single large-conductance Ca2+-activated K+ channels from cultured rat skeletal muscle were developed using two-dimensional analysis of single-channel currents recorded with the patch clamp technique. To extract and display the essential kinetic information, the kinetic structure, from the single channel currents, adjacent open and closed intervals wer...
متن کاملCoupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors)
Excitation-contraction coupling in skeletal muscle requires the release of intracellular calcium ions (Ca2+) through ryanodine receptor (RyR1) channels in the sarcoplasmic reticulum. Half of the RyR1 channels are activated by voltage-dependent Ca2+ channels in the plasma membrane. In planar lipid bilayers, RyR1 channels exhibited simultaneous openings and closings, termed "coupled gating." Addi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 124 شماره
صفحات -
تاریخ انتشار 1986