Global Well-posedness for Periodic Generalized Korteweg-de Vries Equation
نویسندگان
چکیده
In this paper, we show the global well-posedness for periodic gKdV equations in the space H(T), s ≥ 1 2 for quartic case, and s > 5 9 for quintic case. These improve the previous results of Colliander et al in 2004. In particular, the result is sharp in the quartic case.
منابع مشابه
Forced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملLocal Well-posedness for the Periodic Korteweg-de Vries Equation in Analytic Gevrey Classes
Motivated by the work of Grujić and Kalisch, [Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations 15 (2002) 1325–1334], we prove the local well-posedness for the periodic KdV equation in spaces of periodic functions analytic on a strip around the real axis without shrinking the width of...
متن کاملOn the Well Posedness of the Modified Korteweg-de Vries Equation in Weighted Sobolev Spaces
We study local and global well posedness of the k-generalized Korteweg-de Vries equation in weighted Sobolev spaces Hs(R) ∩ L2(|x|2rdx).
متن کاملGlobal Stabilization of the Generalized Korteweg--de Vries Equation Posed on a Finite Domain
This paper is concerned with the internal stabilization of the generalized Korteweg-de Vries equation on a bounded domain. The global well-posedness and the exponential stability are investigated when the exponent in the nonlinear term ranges over the interval [1, 4). The global exponential stability is obtained whatever the location where the damping is active, confirming positively a conjectu...
متن کاملIll-posedness for Periodic Nonlinear Dispersive Equations
In this article, we establish new results about the ill-posedness of the Cauchy problem for the modified Korteweg-de Vries and the defocusing modified Korteweg-de Vries equations, in the periodic case. The lack of local well-posedness is in the sense that the dependence of solutions upon initial data fails to be continuous. We also develop a method for obtaining ill-posedness results in the per...
متن کامل