Large expansion of CTG•CAG repeats is exacerbated by MutSβ in human cells
نویسندگان
چکیده
Trinucleotide repeat expansion disorders (TRED) are caused by genomic expansions of trinucleotide repeats, such as CTG and CAG. These expanded repeats are unstable in germline and somatic cells, with potential consequences for disease severity. Previous studies have demonstrated the involvement of DNA repair proteins in repeat instability, although the key factors affecting large repeat expansion and contraction are unclear. Here we investigated these factors in a human cell model harboring 800 CTG•CAG repeats by individually knocking down various DNA repair proteins using short interfering RNA. Knockdown of MSH2 and MSH3, which form the MutSβ heterodimer and function in mismatch repair, suppressed large repeat expansions, whereas knockdown of MSH6, which forms the MutSα heterodimer with MSH2, promoted large expansions exceeding 200 repeats by compensatory increases in MSH3 and the MutSβ complex. Knockdown of topoisomerase 1 (TOP1) and TDP1, which are involved in single-strand break repair, enhanced large repeat contractions. Furthermore, knockdown of senataxin, an RNA/DNA helicase which affects DNA:RNA hybrid formation and transcription-coupled nucleotide excision repair, exacerbated repeat instability in both directions. These results indicate that DNA repair factors, such as MutSβ play important roles in large repeat expansion and contraction, and can be an excellent therapeutic target for TRED.
منابع مشابه
Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.
Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechan...
متن کاملMutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells
Trinucleotide repeat (TNR) expansions cause at least 17 heritable neurological diseases, including Huntington's disease. Expansions are thought to arise from abnormal processing of TNR DNA by specific trans-acting proteins. For example, the DNA repair complex MutSβ (MSH2-MSH3 heterodimer) is required in mice for on-going expansions of long, disease-causing alleles. A distinctive feature of TNR ...
متن کاملMutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions
CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Addit...
متن کاملBidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats.
More than 12 neurogenetic disorders are caused by unstable expansions of (CTG)•(CAG) repeats. The expanded repeats are unstable in germline and somatic cells, with potential consequences for disease severity. Previous studies have shown that contractions of (CAG)(95) are more frequent when the repeat tract is transcribed. Here we determined whether transcription can promote repeat expansion, us...
متن کاملExpanded CAG/CTG Repeat DNA Induces a Checkpoint Response That Impacts Cell Proliferation in Saccharomyces cerevisiae
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint ...
متن کامل