Secreted Ephrin Receptor A7 Promotes Somatic Cell Reprogramming by Inducing ERK Activity Reduction

نویسندگان

  • Joonseong Lee
  • May Nakajima-Koyama
  • Masamitsu Sone
  • Makito Koga
  • Miki Ebisuya
  • Takuya Yamamoto
  • Eisuke Nishida
چکیده

The role of secreted molecules in cellular reprogramming has been poorly understood. Here we identify a truncated form of ephrin receptor A7 (EPHA7) as a key regulator of reprogramming. Truncated EPHA7 is prominently upregulated and secreted during reprogramming. EPHA7 expression is directly regulated by OCT3/4. EphA7 knockdown results in marked reduction of reprogramming efficiency, and the addition of truncated EPHA7 is able to restore it. ERK activity is markedly reduced during reprogramming, and the secreted, truncated EPHA7 is responsible for ERK activity reduction. Remarkably, treatment of EphA7-knockdown MEFs with the ERK pathway inhibitor restores reprogramming efficiency. Analyses show that truncated EPHA7-induced ERK activity reduction plays an important role in the middle phase of reprogramming. Thus, our findings uncover the importance of secreted EPHA7-induced ERK activity reduction in reprogramming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential effects of Akt isoforms on somatic cell reprogramming.

Akt plays an important role in cell growth, proliferation and survival. The specific roles of the three Akt isoforms in somatic cell reprogramming have not been investigated. Here we report that, during iPSC generation, enhanced Akt1 activity promotes complete reprogramming mainly through increased activation of Stat3 in concert with leukemia inhibitory factor (LIF) and, to a lesser extent, thr...

متن کامل

I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer

Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression pat...

متن کامل

I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline

Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...

متن کامل

The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells.

Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) with the introduction of Oct4, Sox2, Klf4, and c-Myc. Among these four factors, Oct4 is critical in inducing pluripotency because no transcription factor can substitute for Oct4, whereas Sox2, Klf4, and c-Myc can be replaced by other factors. Here we show that the orphan nuclear receptor Nr5a2 (also known as Lrh-1) can ...

متن کامل

Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming

During the process of reprogramming to induced pluripotent stem (iPS) cells, somatic cells switch from oxidative to glycolytic metabolism, a transition associated with profound mitochondrial reorganization. Neither the importance of mitochondrial remodelling for cell reprogramming, nor the molecular mechanisms controlling this process are well understood. Here, we show that an early wave of mit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015