G4 Resolvase 1 tightly binds and unwinds unimolecular G4-DNA
نویسندگان
چکیده
It has been previously shown that the DHX36 gene product, G4R1/RHAU, tightly binds tetramolecular G4-DNA with high affinity and resolves these structures into single strands. Here, we test the ability of G4R1/RHAU to bind and unwind unimolecular G4-DNA. Gel mobility shift assays were used to measure the binding affinity of G4R1/RHAU for unimolecular G4-DNA-formed sequences from the Zic1 gene and the c-Myc promoter. Extremely tight binding produced apparent K(d)'s of 6, 3 and 4 pM for two Zic1 G4-DNAs and a c-Myc G4-DNA, respectively. The low enzyme concentrations required for measuring these K(d)'s limit the precision of their determination to upper boundary estimates. Similar tight binding was not observed in control non-G4 forming DNA sequences or in single-stranded DNA having guanine-rich runs capable of forming tetramolecular G4-DNA. Using a peptide nucleic acid (PNA) trap assay, we show that G4R1/RHAU catalyzes unwinding of unimolecular Zic1 G4-DNA into an unstructured state capable of hybridizing to a complementary PNA. Binding was independent of adenosine triphosphate (ATP), but the PNA trap assay showed that unwinding of G4-DNA was ATP dependent. Competition studies indicated that unimolecular Zic1 and c-Myc G4-DNA structures inhibit G4R1/RHAU-catalyzed resolution of tetramolecular G4-DNA. This report provides evidence that G4R1/RHAU tightly binds and unwinds unimolecular G4-DNA structures.
منابع مشابه
Mutational Dissection of Telomeric DNA Binding Requirements of G4 Resolvase 1 Shows that G4-Structure and Certain 3’-Tail Sequences Are Sufficient for Tight and Complete Binding
Ends of human chromosomes consist of the six nucleotide repeat d[pTTAGGG]n known as telomeric DNA, which protects chromosomes. We have previously shown that the DHX36 gene product, G4 Resolvase 1 (G4R1), binds parallel G-quadruplex (G4) DNA with an unusually tight apparent Kd. Recent work associates G4R1 with the telomerase holoenzyme, which may allow it to access telomeric G4-DNA. Here we show...
متن کاملYin Yang 1 contains G-quadruplex structures in its promoter and 5′-UTR and its expression is modulated by G4 resolvase 1
Yin Yang 1 (YY1) is a multifunctional protein with regulatory potential in tumorigenesis. Ample studies demonstrated the activities of YY1 in regulating gene expression and mediating differential protein modifications. However, the mechanisms underlying YY1 gene expression are relatively understudied. G-quadruplexes (G4s) are four-stranded structures or motifs formed by guanine-rich DNA or RNA ...
متن کاملHuman Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity.
Pif1 proteins are helicases that in yeast are implicated in the maintenance of genome stability. One activity of Saccharomyces cerevisiae Pif1 is to stabilize DNA sequences that could otherwise form deleterious G4 (G-quadruplex) structures by acting as a G4 resolvase. The present study shows that human Pif1 (hPif1, nuclear form) is a G4 DNA-binding and resolvase protein and that these activitie...
متن کاملThe DEAH-box helicase RHAU is an essential gene and critical for mouse hematopoiesis.
The DEAH helicase RHAU (alias DHX36, G4R1) is the only helicase shown to have G-quadruplex (G4)-RNA resolvase activity and the major source of G4-DNA resolvase activity. Previous report showed RHAU mRNA expression to be elevated in human lymphoid and CD34(+) BM cells, suggesting a potential role in hematopoiesis. Here, we generated a conditional knockout of the RHAU gene in mice. Germ line dele...
متن کاملG-quadruplex and G-rich sequence stimulate Pif1p-catalyzed downstream duplex DNA unwinding through reducing waiting time at ss/dsDNA junction
Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA u...
متن کامل