Vanishing of Tate Homology and Depth Formulas over Local Rings
نویسنده
چکیده
Auslander’s depth formula for pairs of Tor-independent modules over a regular local ring, depth(M ⊗R N) = depth M + depth N − depthR, has been generalized in several directions; most significantly it has been shown to hold for pairs of Tor-independent modules over complete intersection rings. In this paper we establish a depth formula that holds for every pair of Tate Tor-independent modules over a Gorenstein local ring. It subsumes previous generalizations of Auslander’s formula and yields new results on vanishing of cohomology over certain Gorenstein rings.
منابع مشابه
Generalized Local Homology Modules of Complexes
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
متن کاملON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.
متن کاملOn the Vanishing of (co)homology over Local Rings
Considering modules of finite complete intersection dimension over commutative Noetherian local rings, we prove (co)homology vanishing results in which we assume the vanishing of nonconsecutive (co)homology groups. In fact, the (co)homology groups assumed to vanish may be arbitrarily far apart
متن کاملOn Simplicial Commutative Rings with Vanishing André-quillen Homology
We propose a generalization of a conjecture of D. Quillen, on the vanishing of André-Quillen homology, to simplicial commutative rings. This conjecture characterizes a notion of local complete intersection, extended to the simplicial setting, under a suitable hypothesis on the local characteristic. Further, under the condition of finite-type homology, we then prove the conjecture in the case of...
متن کاملThe Auslander-Reiten Conjecture for Group Rings
This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...
متن کامل