Decarboxylating and nondecarboxylating glutaryl-coenzyme A dehydrogenases in the aromatic metabolism of obligately anaerobic bacteria.
نویسندگان
چکیده
In anaerobic bacteria using aromatic growth substrates, glutaryl-coenzyme A (CoA) dehydrogenases (GDHs) are involved in the catabolism of the central intermediate benzoyl-CoA to three acetyl-CoAs and CO(2). In this work, we studied GDHs from the strictly anaerobic, aromatic compound-degrading organisms Geobacter metallireducens (GDH(Geo)) (Fe[III] reducing) and Desulfococcus multivorans (GDH(Des)) (sulfate reducing). GDH(Geo) was purified from cells grown on benzoate and after the heterologous expression of the benzoate-induced bamM gene. The gene coding for GDH(Des) was identified after screening of a cosmid gene library. Reverse transcription-PCR revealed that its expression was induced by benzoate; the product was heterologously expressed and isolated. Both wild-type and recombinant GDH(Geo) catalyzed the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA at similar rates. In contrast, recombinant GDH(Des) catalyzed only the dehydrogenation to glutaconyl-CoA. The latter compound was decarboxylated subsequently to crotonyl-CoA by the addition of membrane extracts from cells grown on benzoate in the presence of 20 mM NaCl. All GDH enzymes were purified as homotetramers of a 43- to 44-kDa subunit and contained 0.6 to 0.7 flavin adenine dinucleotides (FADs)/monomer. The kinetic properties for glutaryl-CoA conversion were as follows: for GDH(Geo), the K(m) was 30 +/- 2 microM and the V(max) was 3.2 +/- 0.2 micromol min(-1) mg(-1), and for GDH(Des), the K(m) was 52 +/- 5 microM and the V(max) was 11 +/- 1 micromol min(-1) mg(-1). GDH(Des) but not GDH(Geo) was inhibited by glutaconyl-CoA. Highly conserved amino acid residues that were proposed to be specifically involved in the decarboxylation of the intermediate glutaconyl-CoA were identified in GDH(Geo) but are missing in GDH(Des). The differential use of energy-yielding/energy-demanding enzymatic processes in anaerobic bacteria that degrade aromatic compounds is discussed in view of phylogenetic relationships and constraints of overall energy metabolism.
منابع مشابه
Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens.
The degradation of aromatic compounds follows different biochemical principles in aerobic and anaerobic microorganisms. While aerobes dearomatize and cleave the aromatic ring by oxygenases, facultative anaerobes utilize an ATP-dependent ring reductase for the dearomatization of the activated key intermediate benzoyl-coenzyme A (CoA). In this work, the aromatic metabolism was studied in the obli...
متن کاملDifferential membrane proteome analysis reveals novel proteins involved in the degradation of aromatic compounds in Geobacter metallireducens.
Aromatic compounds comprise a large class of natural and man-made compounds, many of which are of considerable concern for the environment and human health. In aromatic compound-degrading anaerobic bacteria the central intermediate of aromatic catabolism, benzoyl coenzyme A, is attacked by dearomatizing benzoyl-CoA reductases (BCRs). An ATP-dependent BCR has been characterized in facultative an...
متن کاملCyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: Evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes.
In the denitrifying bacterium Thauera aromatica, the central intermediate of anaerobic aromatic metabolism, benzoyl-coenzyme A (CoA), is dearomatized by the ATP-dependent benzoyl-CoA reductase to cyclohexa-1,5-diene-1-carbonyl-CoA (dienoyl-CoA). The dienoyl-CoA is further metabolized by a series of beta-oxidation-like reactions of the so-called benzoyl-CoA degradation pathway resulting in ring ...
متن کاملIdentification and characterization of a succinyl-coenzyme A (CoA):benzoate CoA transferase in Geobacter metallireducens.
Geobacter metallireducens is a Fe(III)-respiring deltaproteobacterium and serves as a model organism for aromatic compound-degrading, obligately anaerobic bacteria. In this study, a genetic system was established for G. metallireducens using nitrate as an alternative electron acceptor. Surprisingly, disruption of the benzoate-induced bamY gene, encoding a benzoate coenzyme A (CoA) ligase, repro...
متن کاملAnaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica--a result of promiscuous enzymes and regulators?
The anaerobic metabolism of catechol (1,2-dihydroxybenzene) was studied in the betaproteobacterium Thauera aromatica that was grown with CO2 as a cosubstrate and nitrate as an electron acceptor. Based on different lines of evidence and on our knowledge of enzymes and genes involved in the anaerobic metabolism of other aromatic substrates, the following pathway is proposed. Catechol is converted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 13 شماره
صفحات -
تاریخ انتشار 2009