Automorphisms of the Category of the Free Nilpotent Groups of the Fixed Class of Nilpotency
نویسنده
چکیده
This research was motivated by universal algebraic geometry. One of the central questions of universal algebraic geometry is: when two algebras have the same algebraic geometry? For answer of this question (see [8],[10]) we must consider the variety Θ, to which our algebras belongs, the category Θ of all finitely generated free algebras of Θ and research how the group AutΘ of all the automorphisms of the category Θ are different from the group InnΘ of the all inner automorphisms of the category Θ. An automorphism Υ of the arbitrary category K is called inner, if it is isomorphic as functor to the identity automorphism of the category K, or, in details, for every A ∈ ObK there exists sΥA : A → Υ(A) isomorphism of these objects of the category K and for every α ∈ MorK (A,B) the diagram A −→ sΥA Υ(A) ↓ α Υ(α) ↓
منابع مشابه
NILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM
In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...
متن کاملFrobenius groups of automorphisms and their fixed points
Suppose that a finite group G admits a Frobenius group of automorphisms FH with kernel F and complement H such that the fixed-point subgroup of F is trivial: CG(F ) = 1. In this situation various properties of G are shown to be close to the corresponding properties of CG(H). By using Clifford’s theorem it is proved that the order |G| is bounded in terms of |H| and |CG(H)|, the rank of G is boun...
متن کاملOn the nilpotency class of the automorphism group of some finite p-groups
Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.
متن کاملA Bound for the Nilpotency Class of a Lie Algebra
In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.
متن کاملOn the Exponent of Triple Tensor Product of p-Groups
The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 17 شماره
صفحات -
تاریخ انتشار 2007