Characterization of outward currents in neurons of the avian nucleus magnocellularis.

نویسندگان

  • M Rathouz
  • L Trussell
چکیده

Characterization of outward currents in neurons of the avian nucleus magnocellularis. J. Neurophysiol. 80: 2824-2835, 1998. Neurons of the nucleus magnocellularis (NM) preserve the timing of auditory signals through the convergence of a variety of voltage- and ligand-gated ion channels. To understand better how these channels interact, we have characterized the kinetics, voltage sensitivity, and pharmacology of outward currents of NM neurons in brain slices. The reversal potential (Erev) of outward currents varied with potassium concentration as expected for currents carried by potassium. However, Erev was consistently more positive than the Nernst potential for potassium (EK). Deviation of Erev from the calculated EK most likely arose from potassium accumulation in extracellular spaces by potassium conductances active at rest and during depolarizing steps. Three outward potassium currents were studied that varied in voltage and pharmacological sensitivity. A tetraethylammonium (TEA)-sensitive, high-threshold current was activated within 1-5 ms of the onset of depolarization, with a half-maximal activation voltage (V1/2) of -19 mV. It was blocked partially by 4-aminopyridine (4-AP) and was the dominant ionic conductance of NM neurons. A dendrotoxin-I (DTX) and 4-AP-sensitive, low-threshold current had a V1/2 of -58 mV, rapid activation kinetics, and only partial inactivation, with decay time constants between 20 and 100 ms. A rapidly inactivating current was observed that was resistant to TEA and DTX and was blocked by intracellular Cs+. The transient current was inactivated almost completely at the resting potential. The onset of inactivation was fastest at potentials negative to those that caused activation. When intracellular K+ was replaced by Cs+, large inward and outward currents were obtained that corresponded respectively to the above-mentioned DTX- and TEA-sensitive currents. Outward, TEA-sensitive current was carried by Cs+, with a PCs/PK of approximately 0.1. In current-clamped neurons, DTX induced repetitive firing and increased membrane time constant near rest but had little effect on action potential duration. These studies indicate that a low-threshold, DTX-sensitive current plays a key role in making NM neurons highly responsive to the onset and offset of synaptic stimuli.

منابع مشابه

A developmental switch to GABAergic inhibition dependent on increases in Kv1-type K+ currents.

Mature nucleus magnocellularis (NM) neurons, the avian homolog of bushy cells of the mammalian anteroventral cochlear nucleus, maintain high [Cl-]i and depolarize in response to GABA. Depolarizing GABAergic postsynaptic potentials (GPSPs) activate both the synaptic conductance and large outward currents, which, when coupled together, inhibit spikes via shunting and spike threshold accommodation...

متن کامل

In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons.

Neurons of the avian nucleus laminaris (NL) provide a neural substrate for azimuthal sound localization. We examined the optimal stimuli for NL neurons to maintain high discharge rates, reliable phase-locking, and sensitivity to time-delayed stimuli. Whole-cell recordings were performed in chick [embryonic days 19-21 (E19-E21)] NL neurons using an in vitro slice preparation. Variation of membra...

متن کامل

Effect of interaction between acute administration of morphine and cannabinoid compounds on spontaneous excitatory and inhibitory postsynaptic currents of magnocellular neurons of supraoptic nucleus

Objective(s): Opioids and cannabinoids are two important compounds that have been shown to influence the activity of magnocellular neurons (MCNs) of supraoptic nucleus (SON). The interaction between opioidergic and cannabinoidergic systems in various structures of the brain and spinal cord is now well established, but not in the MCNs of SON. Materials and methods: In this study, whole cell pat...

متن کامل

Endogenous mGluR activity suppresses GABAergic transmission in avian cochlear nucleus magnocellularis neurons.

GABAergic transmission in the avian cochlear nucleus magnocellularis (NM) of the chick is subject to modulation by gamma-aminobutyric acid type B (GABA(B)) autoreceptors. Here, I investigated modulation of GABAergic transmission in NM by metabotropic glutamate receptors (mGluRs) with whole cell recordings in brain slice preparations. I found that tACPD, a nonspecific mGluR agonist, exerted dose...

متن کامل

A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns

A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 6  شماره 

صفحات  -

تاریخ انتشار 1998