FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase.

نویسندگان

  • Thomas Raab
  • Juan Antonio López-Ráez
  • Dorothée Klein
  • Jose Luis Caballero
  • Enriqueta Moyano
  • Wilfried Schwab
  • Juan Muñoz-Blanco
چکیده

The flavor of strawberry (Fragaria x ananassa) fruit is dominated by an uncommon group of aroma compounds with a 2,5-dimethyl-3(H)-furanone structure. We report the characterization of an enzyme involved in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF; Furaneol), the key flavor compound in strawberries. Protein extracts were partially purified, and the observed distribution of enzymatic activity correlated with the presence of a single polypeptide of approximately 37 kD. Sequence analysis of two peptide fragments showed total identity with the protein sequence of a strongly ripening-induced, auxin-dependent putative quinone oxidoreductase, Fragaria x ananassa quinone oxidoreductase (FaQR). The open reading frame of the FaQR cDNA consists of 969 bp encoding a 322-amino acid protein with a calculated molecular mass of 34.3 kD. Laser capture microdissection followed by RNA extraction and amplification demonstrated the presence of FaQR mRNA in parenchyma tissue of the strawberry fruit. The FaQR protein was functionally expressed in Escherichia coli, and the monomer catalyzed the formation of HDMF. After chemical synthesis and liquid chromatography-tandem mass spectrometry analysis, 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone was confirmed as a substrate of FaQR and the natural precursor of HDMF. This study demonstrates the function of the FaQR enzyme in the biosynthesis of HDMF as enone oxidoreductase and provides a foundation for the improvement of strawberry flavor and the biotechnological production of HDMF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An oxidoreductase from ‘Alphonso’ mango catalyzing biosynthesis of furaneol and reduction of reactive carbonyls

Two furanones, furaneol (4-hydroxy-2,5-dimethyl-3(2H)-furanone) and mesifuran (2,5-dimethyl-4-methoxy-3(2H)-furanone), are important constituents of flavor of the Alphonso cultivar of mango (Mangifera indica). To get insights into the biosynthesis of these furanones, we isolated an enone oxidoreductase gene from the Alphonso mango. It has high sequence similarity to an alkenal/one oxidoreductas...

متن کامل

Natural 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®).

4-Hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF, furaneol®) and its methyl ether 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) are import aroma chemicals and are considered key flavor compounds in many fruit. Due to their attractive sensory properties they are highly appreciated by the food industry. In fruits 2,5-dimethyl-3(2H)-furanones are synthesized by a series of enzymatic steps whereas HDMF i...

متن کامل

Up- and down-regulation of Fragaria x ananassa O-methyltransferase: impacts on furanone and phenylpropanoid metabolism.

A complex mixture of hundreds of substances determines strawberry (Fragaria x ananassa) aroma, but only approximately 15 volatiles are considered as key flavour compounds. Of these, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is regarded as the most important, but it is methylated further by FaOMT (Fragaria x ananassa O-methyltransferase) to 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF) during ...

متن کامل

Formation of 4-hydroxy-2,5-dimethyl-3[2H]-furanone by Zygosaccharomyces rouxii: identification of an intermediate.

The formation of the important flavor compound 4-hydroxy-2,5-dimethyl-3[2H]-furanone (HDMF; Furaneol) from D-fructose-1,6-bisphosphate by the yeast Zygosaccharomyces rouxii was studied with regard to the identification of intermediates present in the culture medium. Addition of o-phenylenediamine, a trapping reagent for alpha-dicarbonyls, to the culture medium and subsequent analysis by high-pr...

متن کامل

Up- and down-regulation of Fragaria3ananassa O-methyltransferase: impacts on furanone and phenylpropanoid metabolism

A complex mixture of hundreds of substances determines strawberry (Fragaria3ananassa) aroma, but only ~15 volatiles are considered as key flavour compounds. Of these, 4-hydroxy-2,5-dimethyl-3(2H)furanone (HDMF) is regarded as the most important, but it is methylated further by FaOMT (Fragaria3ananassa O-methyltransferase) to 2,5-dimethyl-4-methoxy-3(2H)furanone (DMMF) during the ripening proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2006