Primary structure of belladonna mottle virus coat protein.
نویسندگان
چکیده
The coat protein of belladonna mottle virus (a tymovirus) was cleaved by trypsin and chymotrypsin, and the peptides were separated by high performance liquid chromatography using a combination of gel permeation, reverse phase, and ion pair chromatography. The peptides were sequenced manually using the 4-N, N-dimethylaminoazobenzene-4'-isothiocyanate/phenyl isothiocyanate double-coupling method. The chymotryptic peptides were aligned by overlapping sequences of tryptic peptides and by homology with another tymovirus, eggplant mosaic virus. The belladonna mottle virus is more closely related to eggplant mosaic virus than to turnip yellow mosaic virus, the type member of this group, as evident from the sequence homologies of 57 and 32%, respectively. The accumulation of basic residues at the amino terminus implicated in RNA-protein interactions in many spherical plant viruses was absent in all the three sequences. Interestingly, the amino-terminal region is the least conserved among the tymoviruses. The longest stretch of conserved sequence between belladonna mottle virus and eggplant mosaic virus was residues 34-44, whereas it was residues 96-102 in the case of belladonna mottle virus and turnip yellow mosaic virus. A tetrapeptide in the region (residues 154-157) was found to be common for all the three sequences. It is possible that these conserved regions (residues 34-44, 96-102, 154-157) are involved in either intersubunit or RNA-protein interactions.
منابع مشابه
The coat protein is required for the elicitation of the Capsicum L2 gene-mediated resistance against the tobamoviruses.
In Capsicum, the resistance against tobamoviruses conferred by the L2 gene is effective against all but one of the known tobamoviruses. Pepper mild mottle virus (PMMoV) is the only virus which escapes its action. To identify the viral factors affecting induction of the hypersensitive reaction (HR) mediated by the Capsicum spp. L2 resistance gene, we have constructed chimeric viral genomes betwe...
متن کاملSynthesis of an infectious full-length cDNA clone of rice yellow mottle virus and mutagenesis of the coat protein.
A full-length cDNA clone of rice yellow mottle sobemovirus (RYMV) was synthesized and placed adjacent to a bacteriophage T7 RNA polymerase promoter sequence. Capped-RNA transcripts produced in vitro were infectious when mechanically inoculated onto rice plants (Oryza sativa L). Individual full-length clones varied in their degree of infectivity but all were less infectious than native viral RNA...
متن کاملAn encapsidated, subgenomic messenger RNA encodes the coat protein of carnation mottle virus.
The translation strategy of carnation mottle virus (CarMV) in vitro has been generally assumed to involve internal initiation events on full-length, genomic RNA (4.3 kb). We suggest that this is, at least in part, incorrect. Encapsidated RNA, fractionated on denaturing sucrose gradients, or total RNA from CarMV-infected leaves, fractionated under non-denaturing conditions, was translated in an ...
متن کاملDevelopment of SYBR Green I Based Real-Time RT-PCR Assay for Specific Detection of Watermelon silver mottle Virus
Background: Watermelon silver mottle virus (WSMoV), which belongs to the genus Tospovirus, causes significant loss in Cucurbitaceae plants. Objectives: Development of a highly sensitive and reliable detection method for WSMoV. Materials and Methods: Recombinant plasmids for targeting the sequence of nucleocapsid protein gene of WSMoV were constructed. SYBR Green I real-time PCR was established...
متن کاملInterference with Physalis mottle tymovirus replication and coat protein synthesis by transcripts corresponding to the 3'-terminal region of the genomic RNA--role of the pseudoknot structure.
The role of the 3' noncoding (NC) region of Physalis mottle tymovirus genomic RNA in the multiplication of the virus was examined using an in vivo protoplast assay system. Coat protein (CP) synthesis was specifically inhibited by sense 3' NC region transcripts. To establish the role of the pseudoknot structure present in the NC region in virus multiplication, four site-specific mutants, two of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 264 11 شماره
صفحات -
تاریخ انتشار 1989