Relationships among Isoprene Emission Rate, Photosynthesis, and Isoprene Synthase Activity as Influenced by Temperature.
نویسندگان
چکیده
Isoprene emissions from the leaves of velvet bean (Mucuna pruriens L. var utilis) plants exhibited temperature response patterns that were dependent on the plant's growth temperature. Plants grown in a warm regimen (34/28 degrees C, day/night) exhibited a temperature optimum for emissions of 45 degrees C, whereas those grown in a cooler regimen (26/20 degrees C, day/night) exhibited an optimum of 40 degrees C. Several previous studies have provided evidence of a linkage between isoprene emissions and photosynthesis, and more recent studies have demonstrated that isoprene emissions are linked to the activity of isoprene synthase in plant leaves. To further explore this linkage within the context of the temperature dependence of isoprene emissions, we determined the relative temperature dependencies of photosynthetic electron transport, CO(2) assimilation, and isoprene synthase activity. When measured over a broad range of temperatures, the temperature dependence of isoprene emission rate was not closely correlated with either the electron transport rate or the CO(2) assimilation rate. The temperature optima for electron transport rate and CO(2) assimilation rate were 5 to 10 degrees C lower than that for the isoprene emission rate. The dependence of isoprene emissions on photon flux density was also affected by measurement temperature in a pattern independent of those exhibited for electron transport rate and CO(2) assimilation rate. Thus, despite no change in the electron transport rate or CO(2) assimilation rate at 26 and 34 degrees C, the isoprene emission rate changed markedly. The quantum yield of isoprene emissions was stimulated by a temperature increase from 26 to 34 degrees C, whereas the quantum yield for CO(2) assimilation was inhibited. In greenhouse-grown aspen leaves (Populus tremuloides Michaux.), the high temperature threshold for inhibition of isoprene emissions was closely correlated with the high temperature-induced decrease in the in vitro activity of isoprene synthase. When taken together, the results indicate that although there may be a linkage between isoprene emission rate and photosynthesis, the temperature dependence of isoprene emission is not determined solely by the rates of CO(2) assimilation or electron transport. Rather, we propose that regulation is accomplished primarily through the enzyme isoprene synthase.
منابع مشابه
Influenced by Temperature1
Isoprene emissions from the leaves of velvet bean (Mucuna pruriens L. var utilis) plants exhibited temperature response pattems that were dependent on the plant's growth temperature. Plants grown in a warm regimen (34/280C, day/night) exhibited a temperature optimum for emissions of 450C, whereas those grown in a cooler regimen (26/200C, day/night) exhibited an optimum of 40°C. Several previous...
متن کاملResponse of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings.
The mechanism uncoupling isoprene emission and photosynthesis under drought was investigated in Populus alba saplings. Isoprene emission, incorporation of 13C into the isoprene molecule, isoprene synthase (ISPS) activity, concentration and gene expression, and photosynthesis were measured as a function of the fraction of transpirable soil water (FTSW) and in plants recovering from drought. Phot...
متن کاملImpact of rising CO 2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO
Isoprene basal emission (the emission of isoprene from leaves exposed to a light intensity of 1000 m mol m 2 s 1 and maintained at a temperature of 30 ∞ C) was measured in Phragmites australis plants growing under elevated CO 2 in the Bossoleto CO 2 spring at Rapolano Terme, Italy, and under ambient CO 2 at a nearby control site. Gas exchange and biochemical measurements were concurrently taken...
متن کاملA unifying conceptual model for the environmental responses of isoprene emissions from plants
BACKGROUND AND AIMS Isoprene is the most important volatile organic compound emitted by land plants in terms of abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply and CO2 concentration. A need to quantify these controls has long been recognized. There are already models that give realistic results, but they are complex, highly empir...
متن کاملHow light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen
Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 98 3 شماره
صفحات -
تاریخ انتشار 1992