Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production
نویسندگان
چکیده
BACKGROUND Sugar beet and intermediates of sugar beet processing are considered to be very attractive feedstock for ethanol production due to their content of fermentable sugars. In particular, the processing of the intermediates into ethanol is considerably facilitated because it does not require pretreatment or enzymatic treatment in contrast to production from starch raw materials. Moreover, the advantage of thick juice is high solid substance and saccharose content which eliminates problems with the storability of this feedstock. RESULTS The objective of this study were to investigate bioethanol production from thick juice worts and the effects of their concentration, the type of mineral supplement, as well as the dose of yeast inoculum on fermentation dynamics and ethanol yield.The obtained results show that to ensure efficient ethanolic fermentation of high gravity thick juice worts, one needs to use a yeast strain with high ethanol tolerance and a large amount of inoculum. The highest ethanol yield (94.9 ± 2.8% of the theoretical yield) and sugars intake of 96.5 ± 2.9% were obtained after the fermentation of wort with an extract content of 250 g/kg supplemented with diammonium hydrogen phosphate (0.3 g/L of wort) and inoculated with 2 g of Ethanol Red dry yeast per L of wort. An increase in extract content in the fermentation medium from 250 g/L to 280 g/kg resulted in decreased efficiency of the process. Also the distillates originating from worts with an extract content of 250 g/kg were characterized by lower acetaldehyde concentration than those obtained from worts with an extract content of 280 g/kg. CONCLUSIONS Under the favorable conditions determined in our experiments, 38.9 ± 1.2 L of 100% (v/v) ethyl alcohol can be produced from 100 kg of thick juice. The obtained results show that the selection of process conditions and the yeast for the fermentation of worts with a higher sugar content can improve the economic performance of the alcohol-distilling industry due to more efficient ethanol production, reduced consumption of cooling water, and energy for ethanol distillation, as well as a decreased volume of fermentation stillage.
منابع مشابه
Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production
Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (S...
متن کاملThe Effects of Chemical Purification on the Color of Thin and Thick Juices in Sugar Beet Factories
Background and Objectives: Recognizing the impurities of sugar beet and also comparing different methods of juice purification have shown that the chemical purification based on lime and carbon dioxide is really efficient and economic in the sugar industry. Factories have to control and improve purification stages to achieve clear juice with high chemical purity, low color, minimum hardness, su...
متن کاملBioethanol Production from Fermentable Sugar Juice
Bioethanol production from renewable sources to be used in transportation is now an increasing demand worldwide due to continuous depletion of fossil fuels, economic and political crises, and growing concern on environmental safety. Mainly, three types of raw materials, that is, sugar juice, starchy crops, and lignocellulosic materials, are being used for this purpose. This paper will investiga...
متن کاملIntegrated hydrolyzation and fermentation of sugar beet pulp to bioethanol.
Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment meth...
متن کاملIntegrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp
Large amounts of waste biomass are generated in sugar factories from the processing of sugar beets. After diffusion with hot water to draw the sugar from the beet pieces, a wet material remains called pulp. In this study, waste sugar beet pulp biomass was enzymatically depolymerized, and the obtained hydrolyzates were subjected to fermentation processes. Bioethanol, biomethane, and biohydrogen ...
متن کامل