Stability of interfacial nanobubbles.

نویسندگان

  • Xuehua Zhang
  • Derek Y C Chan
  • Dayang Wang
  • Nobuo Maeda
چکیده

Interfacial nanobubbles (INBs) on a solid surface in contact with water have drawn widespread research interest. Although several theoretical models have been proposed to explain their apparent long lifetimes, the underlying mechanism still remains in dispute. In this work, the morphological evolution of INBs was examined in air-equilibrated and partially degassed water with the use of atomic force microscopy (AFM). Our results show that (1) INBs shrank in the partially degassed water while they grew slightly in the air-equilibrated water, (2) the three-phase boundary of the INBs was pinned during the morphological evolution of the INBs. Our analyses show that (1) the lifetime of INBs was sensitive to the saturation level of dissolved gases in the surrounding water, especially when the concentration of dissolved gases was close to saturation, and (2) the pinning of the three-phase boundary could significantly slow down the kinetics of both the growth and the shrinkage of the INBs. We developed a one-dimensional version of the Epstein-Plesset model of gas diffusion to account for the effect of pinning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of surfactants on the formation and the stability of interfacial nanobubbles.

Contamination has previously been invoked to explain the flat shape and the long lifetimes of interfacial nanobubbles (INBs). In this study, the effects of surfactants on the formation and the stability of INBs were investigated when surfactants were added to the system before, during, and after the standard solvent exchange procedure (SSEP) for the formation of INBs. The solutions of sodium do...

متن کامل

Effect of surface modification on interfacial nanobubble morphology and contact line tension.

Past research has confirmed the existence of surface nanobubbles on various hydrophobic substrates (static contact angle >90°) when imaged in air-equilibrated water. Additionally, the use of solvent exchange techniques (based on the difference in saturation levels of air in various solvents) also introduced surface nanobubbles on hydrophilic substrates (static contact angle <90°). In this work,...

متن کامل

Towards energy efficient nanobubble generation with fluidic oscillation

Nanobubbles are a mystery as to their stability and longevity. So far their uses are limited to high value applications, such as medical imaging and controlled drug delivery and release. The current methods of nanobubble generation and understanding of nanobubble interfacial structure are reviewed. The analysis of the potential benefits of nanobubbles leads to the conclusion that if energy effi...

متن کامل

Molecular dynamics study on helium nanobubbles in water.

Interfacial properties of helium nanobubbles in water at normal conditions have been investigated using large-scale molecular dynamics simulations for systems including over one million atoms. The surface tension of a helium nanobubble is a convex function with respect to the bubble radius, and is estimated to vanish at a critical radius of approximately 1 nm.

متن کامل

The Optimized Fabrication of Nanobubbles as Ultrasound Contrast Agents for Tumor Imaging

Nanobubbles, which have the potential for ultrasonic targeted imaging and treatment in tumors, have been a research focus in recent years. With the current methods, however, the prepared uniformly sized nanobubbles either undergo post-formulation manipulation, such as centrifugation, after the mixture of microbubbles and nanobubbles, or require the addition of amphiphilic surfactants. These pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 29 4  شماره 

صفحات  -

تاریخ انتشار 2013