Reciprocally Coupled Local Estimators Implement Bayesian Information Integration Distributively

نویسندگان

  • Wenhao Zhang
  • Si Wu
چکیده

Psychophysical experiments have demonstrated that the brain integrates information from multiple sensory cues in a near Bayesian optimal manner. The present study proposes a novel mechanism to achieve this. We consider two reciprocally connected networks, mimicking the integration of heading direction information between the dorsal medial superior temporal (MSTd) and the ventral intraparietal (VIP) areas. Each network serves as a local estimator and receives an independent cue, either the visual or the vestibular, as direct input for the external stimulus. We find that positive reciprocal interactions can improve the decoding accuracy of each individual network as if it implements Bayesian inference from two cues. Our model successfully explains the experimental finding that bothMSTd and VIP achieve Bayesian multisensory integration, though each of them only receives a single cue as direct external input. Our result suggests that the brain may implement optimal information integration distributively at each local estimator through the reciprocal connections between cortical regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

An Efficient Bayesian Optimal Design for Logistic Model

Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...

متن کامل

Power Control in Wireless Networks with Random Interferes

We study the transmission power control in wireless networks where the cochannel interfering users are random. Examples of such systems are Frequency Hopping and DirectSequence CDMA cellular networks, Packet Radio Networks, and Voice connections with Silent Detection. We derive a simple algorithm to control the power, which converges to a unique set of powers, under synchronous or asynchronous ...

متن کامل

Improvement of Navigation Accuracy using Tightly Coupled Kalman Filter

In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...

متن کامل

Bayes approach to study scale parameter of log logistic distribution

Scale parameter of Log logistic distribution has been studied using Bayesian approach. Posterior distribution has derived by using non informative prior. Posterior distribution is not in close form so we have work with quadrature numerical integration. Various loss functions has been utilized to derive the Bayes estimators and their corresponding risks. Simulation study has been performed to co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013