Partial correction of defective Cl(-) secretion in cystic fibrosis epithelial cells by an analog of squalamine.
نویسندگان
چکیده
Defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-mediated Cl(-) transport across the apical membrane of airway epithelial cells is implicated in the pathophysiology of CF lungs. A strategy to compensate for this loss is to augment Cl(-) transport through alternative pathways. We report here that partial correction of this defect could be attained through the incorporation of artificial anion channels into the CF cells. Introduction of GL-172, a synthetic analog of squalamine, into CFT1 cells increased cell membrane halide permeability. Furthermore, when a Cl(-) gradient was generated across polarized monolayers of primary human airway or Fischer rat thyroid cells in an Ussing chamber, addition of GL-172 caused an increase in the equivalent short-circuit current. The magnitude of this change in short-circuit current was ~30% of that attained when CFTR was maximally stimulated with cAMP agonists. Patch-clamp studies showed that addition of GL-172 to CFT1 cells also increased whole cell Cl(-) currents. These currents displayed a linear current-voltage relationship and no time dependence. Additionally, administration of GL-172 to the nasal epithelium of transgenic CF mice induced a hyperpolarization response to perfusion with a low-Cl(-) solution, indicating restoration of Cl(-) secretion. Together, these results demonstrate that in CF airway epithelial cells, administration of GL-172 is capable of partially correcting the defective Cl(-) secretion.
منابع مشابه
Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells.
Cystic fibrosis airway epithelia exhibit a spectrum of ion transport properties that differ from normal, including not only defective cAMP-mediated Cl- secretion, but also increased Na+ absorption and increased Ca(2+)-mediated Cl- secretion. In the present study, we examined whether adenovirus-mediated (Ad5) transduction of CFTR can correct all of these CF ion transport abnormalities. Polarized...
متن کاملSpiperone, identified through compound screening, activates calcium-dependent chloride secretion in the airway.
Cystic fibrosis (CF) is caused by mutations in the gene producing the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a Cl(-) channel. Its dysfunction limits Cl(-) secretion and enhances Na+ absorption, leading to viscous mucus in the airway. Ca2+-activated Cl(-) channels (CaCCs) are coexpressed with CFTR in the airway surface epithelia. Increases in cytosolic Ca(2...
متن کاملGTP-binding proteins inhibit cAMP activation of chloride channels in cystic fibrosis airway epithelial cells.
Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl- secretion by airway epithelial cells. In CF, cAMP does not activate Cl- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors,...
متن کاملRegulation of Cl- channels in normal and cystic fibrosis airway epithelial cells by extracellular ATP.
The rate of Cl- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl- conductance decreases the capability to secrete Cl-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl- secretion and apical membrane Cl- per...
متن کاملDefective regulation of apical membrane chloride transport and exocytosis in cystic fibrosis.
A biochemical link is proposed between recent observations on defective regulation of Cl- transport in CF respiratory epithelial cells and studies showing altered biological activity of calmodulin in exocrine glands from CF patients. A consensus is emerging that defective beta-adrenergic secretory responsiveness in CF cells is caused by a defect in a regulator protein at a site distal to cyclic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 281 5 شماره
صفحات -
تاریخ انتشار 2001