Maximum Likelihood Estimation of Elliptical Basis Function Parameters with Application to Speaker Verification
نویسندگان
چکیده
The use of the K-means algorithm and the K-nearest neighbor heuristic in estimating the radial basis function (RBF) parameters may produce sub-optimal performance when the input vectors contain correlated components. This paper proposes to overcome this problem by incorporating full covariance matrices into the RBF structure and to use the expectation-maximi-zation (EM) algorithm to estimate the network parameters. The resulting networks, referred to as elliptical basis function (EBF) networks, are applied to text-independent speaker veriication. To examine the ro-bustness of the networks in a noisy environment, both clean speech and telephone speech have been used. Experimental results show that smaller size EBF networks with basis function parameters determined by the EM algorithm outperform the large RBF networks trained in the conventional approach. The best error rates achieved by the EBF networks is 3.70%, while that achieved by the RBF networks is 10.37%.
منابع مشابه
Estimation of Elliptical Basis Function Parameters by the Em Algorithm with Application to Speaker Veriication (final Version) Paper No.: Tnna069
This paper proposes to incorporate full covariance matrices into the radial basis function (RBF) networks and to use the Expectation-Maximization (EM) algorithm to estimate the basis function parameters. The resulting networks, referred to as elliptical basis function (EBF) networks, are evaluated through a series of text-independent speaker veriication experiments involving 258 speakers from a...
متن کاملChange Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering
In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...
متن کاملMaximum Likelihood Estimation of Parameters in Generalized Functional Linear Model
Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...
متن کاملAN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM
Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...
متن کاملValue at Risk Estimation using the Kappa Distribution with Application to Insurance Data
The heavy tailed distributions have mostly been used for modeling the financial data. The kappa distribution has higher peak and heavier tail than the normal distribution. In this paper, we consider the estimation of the three unknown parameters of a Kappa distribution for evaluating the value at risk measure. The value at risk (VaR) as a quantile of a distribution is one of the import...
متن کامل