Cone-beam CT reconstruction for non-periodic organ motion using time-ordered chain graph model
نویسندگان
چکیده
PURPOSE The purpose of this study is to introduce the new concept of a four-dimensional (4D) cone-beam computed tomography (CBCT) reconstruction approach for non-periodic organ motion in cooperation with the time-ordered chain graph model (TCGM) and to compare it with previously developed methods such as total variation-based compressed sensing (TVCS) and prior-image constrained compressed sensing (PICCS). MATERIALS AND METHODS Our proposed reconstruction is based on a model including the constraint originating from the images of neighboring time phases. Namely, the reconstructed time-series images depend on each other in this TCGM scheme, and the time-ordered images are concurrently reconstructed in the iterative reconstruction approach. In this study, iterative reconstruction with the TCGM was carried out with 90° projection ranges. The images reconstructed by the TCGM were compared with the images reconstructed by TVCS (200° projection ranges) and PICCS (90° projection ranges). Two kinds of projection data sets-an elliptic-cylindrical digital phantom and two clinical patients' data-were used. For the digital phantom, an air sphere was contained and virtually moved along the longitudinal axis by 3 cm/30 s and 3 cm/60 s; the temporal resolution was evaluated by measuring the penumbral width of the air sphere. The clinical feasibility of the non-periodic time-ordered 4D CBCT image reconstruction was examined with the patient data in the pelvic region. RESULTS In the evaluation of the digital-phantom reconstruction, the penumbral widths of the TCGM yielded the narrowest result; the results obtained by PICCS and TCGM using 90° projection ranges were 2.8% and 18.2% for 3 cm/30 s, and 5.0% and 23.1% for 3 cm/60 s narrower than that of TVCS using 200° projection ranges. This suggests that the TCGM has a better temporal resolution, whereas PICCS seems similar to TVCS. These reconstruction methods were also compared using patients' projection data sets. Although all three reconstruction results showed motion related to rectal gas or stool, the result obtained by the TCGM was visibly clearer with less blurring. CONCLUSION The TCGM is a feasible approach to visualize non-periodic organ motion. The digital-phantom results demonstrated that the proposed method provides 4D image series with a better temporal resolution compared to TVCS and PICCS. The clinical patients' results also showed that the present method enables us to visualize motion related to rectal gas and flatus in the rectum.
منابع مشابه
Phase-Correlated Dynamic CT
Phase–correlated CT is the measurement of an organ that exhibits quasi–periodic motion. Dedicated image reconstruction algorithms utilize only those data ranges that have been acquired within the desired motion phase and achieve to produce motion free image data. Dynamic CT means covering an organ of interest multiple times to monitor the concentration of contrast agents over the time. Thus inf...
متن کاملI. INTRODUCTION Advances in model-based iterative reconstruction (IR) methods for x-ray CT and cone-beam CT (CBCT) imaging
C-arm cone-beam CT offers great potential in image-guided interventions, but conventional analytic reconstruction methods are associated with limited image quality, particularly for soft-tissue imaging. While model-based iterative reconstruction (IR) methods improve image quality and/or reduce radiation dose, long reconstruction time limits utility in clinical workflow. Additionally, in contras...
متن کاملAward Number : DAMD 17 - 03 - 1 - 0657 TITLE : Multiple Aperture Radiation Therapy ( MART ) for Breast Cancer
On-board imager (OBI) based cone-beam computed tomography (CBCT) has become available in radiotherapy clinics to accurately identify the target in the treatment position. However, due to the relatively slow gantry rotation (typically about 60 s for a full 360◦ scan) in acquiring the CBCT projection data, the patient’s respiratory motion causes serious problems such as blurring, doubling, streak...
متن کامل3D Lung Tumor Motion Model Extraction from 2D Projection Images of Mega-voltage Cone Beam CT via Optimal Graph Search
In this paper, we propose a novel method to convert segmentation of objects with quasi-periodic motion in 2D rotational cone beam projection images into an optimal 3D multiple interrelated surface detection problem, which can be solved by a graph search framework. The method is tested on lung tumor segmentation in projection images of mega-voltage cone beam CT (MVCBCT). A 4D directed graph is c...
متن کامل4D CT image reconstruction with diffeomorphic motion model
Four-dimensional (4D) respiratory correlated computed tomography (RCCT) has been widely used for studying organ motion. Most current RCCT imaging algorithms use binning techniques that are susceptible to artifacts and challenge the quantitative analysis of organ motion. In this paper, we develop an algorithm for analyzing organ motion which uses the raw, time-stamped imaging data to reconstruct...
متن کامل