Texture Classification Using Hierarchical Linear Discriminant Space
نویسندگان
چکیده
As a representative of the linear discriminant analysis, the Fisher method is most widely used in practice and it is very effective in twoclass classification. However, when it is expanded to a multi-class classification problem, the precision of its discrimination may become worse. A main reason is an occurrence of overlapped distributions on the discriminant space built by Fisher criterion. In order to take such overlaps among classes into consideration, our approach builds a new discriminant space by hierarchically classifying the overlapped classes. In this paper, we propose a new hierarchical discriminant analysis for texture classification. We divide the discriminant space into subspaces by recursively grouping the overlapped classes. In the experiment, texture images from many classes are classified based on the proposed method. We show the outstanding result compared with the conventional Fisher method. key words: texture classification, hierarchical discriminant analysis
منابع مشابه
Automatic Classification and Analysis Facility for Similarity Retrieval of Design Objects
Automatic classification and analysis facilities for huge number of design objects, such as textures, help designers to spare much time for creation. Since even to the same photographs, users may subjectively give their own interpretations based on their experience and knowledge, everyone may have his (or her) unique subjective criteria on judging similarity. We developed a tri-contrast paramet...
متن کاملAutomatic classification of Non-alcoholic fatty liver using texture features from ultrasound images
Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...
متن کاملNonlinear Scale Space Theory in Texture Classification Using Multiple Classifier Systems
Textures have an intrinsic multiresolution property due to their varying texel size. This suggests using multiresolution techniques in texture analysis. Recently linear scale space techniques along with multiple classifier systems have been proposed as an effective approach in texture classification especially at small sample sizes. However, linear scale space blurs and dislocates conceptually ...
متن کاملComputer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space.
We studied the effectiveness of using texture features derived from spatial grey level dependence (SGLD) matrices for classification of masses and normal breast tissue on mammograms. One hundred and sixty-eight regions of interest (ROIS) containing biopsy-proven masses and 504 ROIS containing normal breast tissue were extracted from digitized mammograms for this study. Eight features were calcu...
متن کاملTexture Image Classification Using Nonsubsampled Contourlet Transform and Local Directional Binary Patterns
Texture is a rich source of visual information about the surface characteristics of an object in the digital image. So texture characteristics play an important role in texture image classification. In this paper, we propose a novel approach of texture image classification based on nonsubsampled contourlet transform (NSCT) and local directional binary patterns (LDBP). The NSCT has translation i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-D شماره
صفحات -
تاریخ انتشار 2005