Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA.

نویسندگان

  • Helene C Eisenman
  • Mascha Mues
  • Sarah E Weber
  • Susana Frases
  • Stuart Chaskes
  • Gary Gerfen
  • Arturo Casadevall
چکیده

The human fungal pathogen Cryptococcus neoformans produces melanin in the presence of various substrates, including the L enantiomer of 3,4-dihydroxyphenylalanine (DOPA). The enzyme laccase catalyses the formation of melanin by oxidizing L-DOPA, initiating a series of presumably spontaneous reactions that ultimately leads to the polymerization of the pigment in the yeast cell wall. There, melanin protects the cell from a multitude of environmental and host assaults. Thus, the ability of C. neoformans to produce pigments from a variety of available substrates is likely to confer a survival advantage. A number of C. neoformans isolates of different serotypes produced pigments from D-DOPA, the stereoisomer of L-DOPA. Acid-resistant particles were isolated from pigmented C. neoformans cells grown in the presence of D-DOPA. Biophysical characterization showed the particles had a stably detectable free-radical signal by EPR, and negative zeta potential, similar to L-DOPA-derived particles. No major differences were found between L- and D-DOPA ghosts in terms of binding to anti-melanin antibodies, or in overall architecture when imaged by electron microscopy. C. neoformans cells utilized L- and D-DOPA at a similar rate. Overall, our results indicate that C. neoformans shows little stereoselectivity for utilizing DOPA in melanin synthesis. The ability of C. neoformans to use both L and D enantiomers for melanization implies that this organism has access to a greater potential pool of substrates for melanin synthesis, and this could potentially be exploited in the design of therapeutic inhibitors of laccase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vesicle-associated melanization in Cryptococcus neoformans.

Recently, several pathogenic fungi were shown to produce extracellular vesicles that contain various components associated with virulence. In the human pathogenic fungus Cryptococcus neoformans, these components included laccase, an enzyme that catalyses melanin synthesis. Spherical melanin granules have been observed in the cell wall of C. neoformans. Given that melanin granules have dimension...

متن کامل

Laccase activity in Cryptococcus gattii strains isolated from goats.

Cryptococcosis is a life-threatening infection in humans and animals caused by encapsulated yeasts of the genus Cryptococcus. Cryptococcus neoformans and Cryptococcus gattii are the main agents of this mycosis. Until 2002 C. gattii was classified as a variety of C. neoformans but now is accepted as an independent species. The laccase (phenoloxydase) enzyme produced by these yeasts is considered...

متن کامل

Effects of melanin upon susceptibility of Cryptococcus to antifungals.

Melanin is a recognized virulence factor in Cryptococcus neoformans; several pathogenetic mechanisms have been suggested. We studied melanin as an antifungal resistance factor. The growth of laccase-active strains of C. neoformans and C. albidus in L-DOPA resulted in the production of black pigment. The formal minimal inhibitory concentrations (MICs) of amphotericin B and fluconazole were not c...

متن کامل

Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1.

Laccases are thought to be important to the virulence of many fungal pathogens by producing melanin, a presumed oxygen radical scavenger. A laccase in Cryptococcus neoformans has been shown to synthesize melanin and contributes to the virulence and the survival in macrophages of this fungal pathogen. One C. neoformans laccase gene, LAC1, previously called CNLAC1, has been extensively studied, a...

متن کامل

Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin.

The fungal pathogens Cryptococcus neoformans and Histoplasma capsulatum produce melanin-like pigments in the presence of L-dopa in vitro and during mammalian infection. We investigated whether melanization affected the susceptibilities of the fungi to amphotericin B, caspofungin, fluconazole, itraconazole, or flucytosine (5FC). Using the standard macrodilution MIC protocol (the M27A protocol) o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 153 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2007