Resource aware design of a deep convolutional-recurrent neural network for speech recognition through audio-visual sensor fusion
نویسندگان
چکیده
Today’s Automatic Speech Recognition systems only rely on acoustic signals and often don’t perform well under noisy conditions. Performing multi-modal speech recognition processing acoustic speech signals and lip-reading video simultaneously significantly enhances the performance of such systems, especially in noisy environments. This work presents the design of such an audio-visual system for Automated Speech Recognition, taking memory and computation requirements into account. First, a Long-Short-TermMemory neural network for acoustic speech recognition is designed. Second, Convolutional Neural Networks are used to model lipreading features. These are combined with an LSTM network to model temporal dependencies and perform automatic lip-reading on video. Finally, acoustic-speech and visual lip-reading networks are combined to process acoustic and visual features simultaneously. An attention mechanism ensures performance of the model in noisy environments. This system is evaluated on the TCD-TIMIT ’lipspeaker’ dataset for audio-visual phoneme recognition with clean audio and with additive white noise at an SNR of 0dB. It achieves 75.70% and 58.55% phoneme accuracy respectively, over 14 percentage points better than the state-of-the-art for all noise levels.
منابع مشابه
Speech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملAudio Visual Speech Recognition Using Deep Recurrent Neural Networks
In this work, we propose a training algorithm for an audiovisual automatic speech recognition (AV-ASR) system using deep recurrent neural network (RNN).First, we train a deep RNN acoustic model with a Connectionist Temporal Classification (CTC) objective function. The frame labels obtained from the acoustic model are then used to perform a non-linear dimensionality reduction of the visual featu...
متن کاملCharacterizing Types of Convolution in Deep Convolutional Recurrent Neural Networks for Robust Speech Emotion Recognition
Deep convolutional neural networks are being actively investigated in a wide range of speech and audio processing applications including speech recognition, audio event detection and computational paralinguistics, owing to their ability to reduce factors of variations, for learning from speech. However, studies have suggested to favor a certain type of convolutional operations when building a d...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کامل