5'-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics.

نویسندگان

  • Takashi Tsuboi
  • Gabriela da Silva Xavier
  • Isabelle Leclerc
  • Guy A Rutter
چکیده

Changes in 5'-AMP-activated protein kinase (AMPK) activity have recently been implicated in the control of insulin secretion by glucose (da Silva Xavier, G., Leclerc, I., Varadi, A., Tsuboi, T., Moule, S. K., and Rutter, G. A. (2003) Biochem. J. 371, 761-774). Here, we examine the possibility that activation of AMPK may regulate distal steps in insulin secretion, including vesicle movement and fusion with the plasma membrane. Vesicle dynamics were imaged in single pancreatic MIN6 beta-cells expressing lumen-targeted pH-insensitive yellow fluorescent protein, neuropeptide Y.Venus, or monomeric red fluorescent protein by total internal reflection fluorescence and Nipkow disc confocal microscopy. Overexpression of a truncated, constitutively active form of AMPK (AMPKalpha1, 1-312, T172D; AMPK CA), inhibited glucose-stimulated (30 versus 3.0 mM) vesicle movements, and decreased the number of vesicles docked or fusing at the plasma membrane, while having no effect on the kinetics of individual secretory events. Expression of the activated form of AMPK also prevented dispersal of the cortical actin network at high glucose concentrations. Monitored in permeabilized cells, where the effects of AMPK CA on glucose metabolism and ATP synthesis were bypassed, AMPK CA inhibited Ca2+ and ATP-induced insulin secretion, and decreased ATP-dependent vesicle movements. These findings suggest that components of the vesicle transport network, including vesicle-associated motor proteins, may be targets of AMPK in beta-cells, dephosphorylation of which is required for vesicle mobilization at elevated glucose concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat

Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...

متن کامل

Regulation of SNARE assembly by protein phosphorylation

Protein phosphorylation is emerging as an important regulatory mechanism that controls the secretory pathway. It enables coupling between the vesicular transport machinery and signaling cascades that are activated by both internal and external stimuli. Proteins that mediate the last steps of membrane fusion such as SNAREs, Sec1/Munc18, Rab proteins, and others undergo post-translational modific...

متن کامل

The BAR domain protein Arfaptin-1 controls secretory granule biogenesis at the trans-Golgi network.

BAR domains can prevent membrane fission through their ability to shield necks of budding vesicles from fission-inducing factors. However, the physiological role of this inhibitory function and its regulation is unknown. Here we identify a checkpoint involving the BAR-domain-containing protein Arfaptin-1 that controls biogenesis of secretory granules at the trans-Golgi network (TGN). We demonst...

متن کامل

Insulin-stimulated leptin secretion requires calcium and PI3K/Akt activation.

Numerous studies have focused on the regulation of leptin signalling and the functions of leptin in energy homoeostasis; however, little is known about how leptin secretion is regulated. In the present study we studied leptin storage and secretion regulation in 3T3-L1 and primary adipocytes. Leptin is stored in membrane-bound vesicles that are localized predominantly in the ER (endoplasmic reti...

متن کامل

Cyclic AMP potentiates Ca-dependent exocytosis in pancreatic duct epithelial cells

Eukaryotic cells discharge secretory products by fusion of secretory vesicles with the plasma membrane, a process that is often regulated. In neurons and endocrine cells, exocytosis uses intracellular Ca as the final trigger and can be enhanced in different ways by protein kinases. Thus, in pituitary gonadotropes, protein kinase C (PKC) increases the Ca sensitivity of exocytosis (Zhu et al., 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 52  شماره 

صفحات  -

تاریخ انتشار 2003