On reduced convex QP formulations of monotone LCPs

نویسنده

  • Stephen J. Wright
چکیده

Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation|one that has fewer constraints than the \stan-dard" QP formulation|is available. We mention several instances of this class, including the known case in which the coeecient matrix in the LCP is symmetric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Reduced Convex QP Formulations of Monotone LCP Problems

Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation|one that has fewer constraints than the \stan-dard" QP formulation|is available. We mention several instances of this class, including the known case in which the coeecient matrix in the LCP...

متن کامل

On Reduced Convex QP Formulations of

Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation|one that has fewer constraints than the \standard" QP formulation|is available. We mention several instances of this class, including the known case in which the coe cient matrix in the LCP ...

متن کامل

J . Wright ? On Reduced Convex QP Formulations ofMonotone

Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation|one that has fewer constraints than the \stan-dard" QP formulation|is available. We mention several instances of this class, including the known case in which the coeecient matrix in the LCP...

متن کامل

Primal-dual regularized SQP and SQCQP type methods for convex programming and their complexity analysis

This paper presents and studies the iteration-complexity of two new inexact variants of Rockafellar’s proximal method of multipliers (PMM) for solving convex programming (CP) problems with a finite number of functional inequality constraints. In contrast to the first variant which solves convex quadratic programming (QP) subproblems at every iteration, the second one solves convex constrained q...

متن کامل

Message-Passing Algorithms for Quadratic Programming Formulations of MAP Estimation

Computingmaximum a posteriori (MAP) estimation in graphical models is an important inference problem with many applications. We present message-passing algorithms for quadratic programming (QP) formulations of MAP estimation for pairwise Markov random fields. In particular, we use the concaveconvex procedure (CCCP) to obtain a locally optimal algorithm for the non-convex QP formulation. A simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2001