PIN6 is required for nectary auxin response and short stamen development.
نویسندگان
چکیده
The PIN family of proteins is best known for its involvement in polar auxin transport and tropic responses. PIN6 (At1g77110) is one of the remaining PIN family members in Arabidopsis thaliana to which a biological function has not yet been ascribed. Here we report that PIN6 is a nectary-enriched gene whose expression level is positively correlated with total nectar production in Arabidopsis, and whose function is required for the proper development of short stamens. PIN6 accumulates in internal membranes consistent with the ER, and multiple lines of evidence demonstrate that PIN6 is required for auxin-dependent responses in nectaries. Wild-type plants expressing auxin-responsive DR5:GFP or DR5:GUS reporters displayed intense signal in lateral nectaries, but pin6 lateral nectaries showed little or no signal for these reporters. Further, exogenous auxin treatment increased nectar production more than tenfold in wild-type plants, but nectar production was not increased in pin6 mutants when treated with auxin. Conversely, the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) reduced nectar production in wild-type plants by more than twofold, but had no significant effect on pin6 lines. Interestingly, a MYB57 transcription factor mutant, myb57-2, closely phenocopied the loss-of-function mutant pin6-2. However, PIN6 expression was not dependent on MYB57, and RNA-seq analyses of pin6-2 and myb57-2 mutant nectaries showed little overlap in terms of differentially expressed genes. Cumulatively, these results demonstrate that PIN6 is required for proper auxin response and nectary function in Arabidopsis. These results also identify auxin as an important factor in the regulation of nectar production, and implicate short stamens in the maturation of lateral nectaries.
منابع مشابه
Role of the Arabidopsis PIN6 Auxin Transporter in Auxin Homeostasis and Auxin-Mediated Development
Plant-specific PIN-formed (PIN) efflux transporters for the plant hormone auxin are required for tissue-specific directional auxin transport and cellular auxin homeostasis. The Arabidopsis PIN protein family has been shown to play important roles in developmental processes such as embryogenesis, organogenesis, vascular tissue differentiation, root meristem patterning and tropic growth. Here we ...
متن کاملA Regulatory Network for Coordinated Flower Maturation
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on ...
متن کاملPatterning of Leaf Vein Networks by Convergent Auxin Transport Pathways
The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patter...
متن کاملAuxin polar transport in stamen formation and development: how many actors?
In flowering plants, proper development of stamens, the male reproductive organs, is required for successful sexual reproduction. In Arabidopsis thaliana normally six stamen primordia arise in the third whorl of floral organs and subsequently differentiate into stamen filaments and anthers, where male meiosis occurs, thus ending the early developmental phase. This early phase is followed by a l...
متن کاملAuxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation.
Pollination in flowering plants requires that anthers release pollen when the gynoecium is competent to support fertilization. We show that in Arabidopsis thaliana, two paralogous auxin response transcription factors, ARF6 and ARF8, regulate both stamen and gynoecium maturation. arf6 arf8 double-null mutant flowers arrested as infertile closed buds with short petals, short stamen filaments, und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 74 6 شماره
صفحات -
تاریخ انتشار 2013