Gene Therapy of c-myc Suppressor FUSE-Binding Protein-Interacting Repressor by Sendai Virus Delivery Prevents Tracheal Stenosis

نویسندگان

  • Daisuke Mizokami
  • Koji Araki
  • Nobuaki Tanaka
  • Hiroshi Suzuki
  • Masayuki Tomifuji
  • Taku Yamashita
  • Yasuji Ueda
  • Hideaki Shimada
  • Kazuyuki Matsushita
  • Akihiro Shiotani
چکیده

Acquired tracheal stenosis remains a challenging problem for otolaryngologists. The objective of this study was to determine whether the Sendai virus (SeV)-mediated c-myc suppressor, a far upstream element (FUSE)-binding protein (FBP)-interacting repressor (FIR), modulates wound healing of the airway mucosa, and whether it prevents tracheal stenosis in an animal model of induced mucosal injury. A fusion gene-deleted, non-transmissible SeV vector encoding FIR (FIR-SeV/ΔF) was prepared. Rats with scraped airway mucosae were administered FIR-SeV/ΔF through the tracheostoma. The pathological changes in the airway mucosa and in the tracheal lumen were assessed five days after scraping. Untreated animals showed hyperplasia of the airway epithelium and a thickened submucosal layer with extensive fibrosis, angiogenesis, and collagen deposition causing lumen stenosis. By contrast, the administration of FIR-SeV/ΔF decreased the degree of tracheal stenosis (P < 0.05) and improved the survival rate (P < 0.05). Immunohistochemical staining showed that c-Myc expression was downregulated in the tracheal basal cells of the FIR-SeV/ΔF-treated animals, suggesting that c-myc was suppressed by FIR-SeV/ΔF in the regenerating airway epithelium of the injured tracheal mucosa. The airway-targeted gene therapy of the c-myc suppressor FIR, using a recombinant SeV vector, prevented tracheal stenosis in a rat model of airway mucosal injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SAP155-mediated splicing of FUSE-binding protein-interacting repressor serves as a molecular switch for c-myc gene expression.

The Far UpStream Element (FUSE)-binding protein-interacting repressor (FIR), a c-myc transcriptional suppressor, is alternatively spliced removing the transcriptional repression domain within exon 2 (FIRΔexon2) in colorectal cancers. SAP155 is a subunit of the essential splicing factor 3b (SF3b) subcomplex in the spliceosome. This study aims to study the significance of the FIR-SAP155 interacti...

متن کامل

c-myc suppressor FBP-interacting repressor for cancer diagnosis and therapy.

Based on the genetic background of cancer, we have been trying to develop novel diagnostic and therapeutic strategies against human cancers. c-myc gene activation has been detected in many human cancers, indicating a key role of c-myc in tumor development. Thus targeting c-myc gene suppression is a promising strategy for cancer treatment. Recently, an interaction between FIR (FUSE-Binding Prote...

متن کامل

Signaling and Regulation SAP155-Mediated Splicing of FUSE-Binding Protein- Interacting Repressor Serves as a Molecular Switch for c-myc Gene Expression

The Far UpStream Element (FUSE)-binding protein-interacting repressor (FIR), a c-myc transcriptional suppressor, is alternatively spliced removing the transcriptional repression domain within exon 2 (FIRDexon2) in colorectal cancers. SAP155 is a subunit of the essential splicing factor 3b (SF3b) subcomplex in the spliceosome. This study aims to study the significance of the FIR–SAP155 interacti...

متن کامل

Hierarchical mechanisms build the DNA-binding specificity of FUSE binding protein.

The far upstream element (FUSE) binding protein (FBP), a single-stranded nucleic acid binding protein, is recruited to the c-myc promoter after melting of FUSE by transcriptionally generated dynamic supercoils. Via interactions with TFIIH and FBP-interacting repressor (FIR), FBP modulates c-myc transcription. Here, we investigate the contributions of FBP's 4 K Homology (KH) domains to sequence ...

متن کامل

Cell Cycle and Senescence Interactions between SAP155 and FUSE-Binding Protein- Interacting Repressor Bridges c-Myc and P27Kip1 Expression

Oncogenic c-Myc plays a critical role in cell proliferation, apoptosis, and tumorigenesis, but the precise mechanisms that drive this activity remain largely unknown. P27Kip1 (CDKN1B) arrests cells in G1, and SAP155 (SF3B1), a subunit of the essential splicing factor 3b (SF3b) subcomplex of the spliceosome, is required for proper P27 pre-mRNA splicing. FUSE-binding protein-interacting repressor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015