Ambulatory Assessment of Instantaneous Velocity during Walking Using Inertial Sensor Measurements
نویسندگان
چکیده
A novel approach for estimating the instantaneous velocity of the pelvis during walking was developed based on Inertial Measurement Units (IMUs). The instantaneous velocity was modeled by the sum of a cyclical component, decomposed in the Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP) directions, and the Average Progression Velocity (APV) over each gait cycle. The proposed method required the availability of two IMUs, attached to the pelvis and one shank. Gait cycles were identified from the shank angular velocity; for each cycle, the Fourier series coefficients of the pelvis and shank acceleration signals were computed. The cyclical component was estimated by Fourier-based time-integration of the pelvis acceleration. A Bayesian Linear Regression (BLR) with Automatic Relevance Determination (ARD) predicted the APV from the stride time, the stance duration, and the Fourier series coefficients of the shank acceleration. Healthy subjects performed tasks of Treadmill Walking (TW) and Overground Walking (OW), and an optical motion capture system (OMCS) was used as reference for algorithm performance assessment. The widths of the limits of agreements (±1.96 standard deviation) were computed between the proposed method and the reference OMCS, yielding, for the cyclical component in the different directions: ML: ±0.07 m/s (±0.10 m/s); VT: ±0.03 m/s (±0.05 m/s); AP: ±0.06 m/s (±0.10 m/s), in TW (OW) conditions. The ARD-BLR achieved an APV root mean square error of 0.06 m/s (0.07 m/s) in the same conditions.
منابع مشابه
Walking Distance Estimation Using Walking Canes with Inertial Sensors
A walking distance estimation algorithm for cane users is proposed using an inertial sensor unit attached to various positions on the cane. A standard inertial navigation algorithm using an indirect Kalman filter was applied to update the velocity and position of the cane during movement. For quadripod canes, a standard zero-velocity measurement-updating method is proposed. For standard canes, ...
متن کاملAmbulatory estimation of foot placement during walking using inertial sensors.
This study proposes a method to assess foot placement during walking using an ambulatory measurement system consisting of orthopaedic sandals equipped with force/moment sensors and inertial sensors (accelerometers and gyroscopes). Two parameters, lateral foot placement (LFP) and stride length (SL), were estimated for each foot separately during walking with eyes open (EO), and with eyes closed ...
متن کاملAutomatic Identification and Localization of Inertial Sensors on the Human Body
Human motion capture is used for many purposes like sports training and rehabilitation. In the last few years, inertial sensors (accelerometers and gyroscopes) in combination with magnetic sensors was proven to be a suitable ambulatory alternative to traditional human motion tracking systems based on optical position measurements, which are restricted to a bounded area. While accurate full 6 de...
متن کاملFusion of Inertial/Magnetic Sensor Measurements and Map Information for Pedestrian Tracking
The wearable inertial/magnetic sensor based human motion analysis plays an important role in many biomedical applications, such as physical therapy, gait analysis and rehabilitation. One of the main challenges for the lower body bio-motion analysis is how to reliably provide position estimations of human subject during walking. In this paper, we propose a particle filter based human position es...
متن کاملA Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors
This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filte...
متن کامل