mTORC2 critically regulates renal potassium handling.
نویسندگان
چکیده
The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which were viable and had no obvious phenotype, except for a 2.5-fold increase in plasma aldosterone. Challenged with a low-Na+ diet, these mice adequately reduced Na+ excretion; however, Rictorfl/fl Ksp-Cre mice rapidly developed hyperkalemia on a high-K+ diet, despite a 10-fold increase in serum aldosterone levels, implying that mTORC2 regulates kaliuresis. Phosphorylation of serum- and glucocorticoid-inducible kinase 1 (SGK1) and PKC-α was absent in Rictorfl/fl Ksp-Cre mice, indicating a functional block in K+ secretion activation via ROMK channels. Indeed, patch-clamp experiments on split-open tubular segments from the transition zone of the late connecting tubule and early cortical collecting duct demonstrated that Ba2+-sensitive apical K+ currents were barely detectable in the majority of Rictorfl/fl Ksp-Cre mice. Conversely, epithelial sodium channel (ENaC) activity was largely preserved, suggesting that the reduced ability to maintain K+ homeostasis is the result of impaired apical K+ conductance and not a reduced electrical driving force for K+ secretion. Thus, these data unravel a vital and nonredundant role of mTORC2 for distal tubular K+ handling.
منابع مشابه
Endothelial Cell mTOR Complex-2 Regulates Sprouting Angiogenesis
Tumor neovascularization is targeted by inhibition of vascular endothelial growth factor (VEGF) or the receptor to prevent tumor growth, but drug resistance to angiogenesis inhibition limits clinical efficacy. Inhibition of the phosphoinositide 3 kinase pathway intermediate, mammalian target of rapamycin (mTOR), also inhibits tumor growth and may prevent escape from VEGF receptor inhibitors. mT...
متن کاملOver-expression of DNA-PKcs in renal cell carcinoma regulates mTORC2 activation, HIF-2α expression and cell proliferation
Here, we demonstrated that DNA-PKcs is over-expressed in multiple human renal cell carcinoma (RCC) tissues and in primary/established human RCCs. Pharmacological or genetic inhibition of DNA-PKcs suppressed proliferation of RCC cells. DNA-PKcs was in the complex of mTOR and SIN1, mediating mTORC2 activation and HIF-2α expression in RCC cells. Inhibiting or silencing DNA-PKcs suppressed AKT Ser-...
متن کاملMammalian Target of Rapamycin Complex 2 Signaling Pathway Regulates Transient Receptor Potential Cation Channel 6 in Podocytes
Transient receptor potential cation channel 6 (TRPC6) is a nonselective cation channel, and abnormal expression and gain of function of TRPC6 are involved in the pathogenesis of hereditary and nonhereditary forms of renal disease. Although the molecular mechanisms underlying these diseases remain poorly understood, recent investigations revealed that many signaling pathways are involved in regu...
متن کاملGlucagon actions on the kidney revisited: possible role in potassium homeostasis.
It is now recognized that the metabolic disorders observed in diabetes are not, or not only due to the lack of insulin or insulin resistance, but also to elevated glucagon secretion. Accordingly, selective glucagon receptor antagonists are now proposed as a novel strategy for the treatment of diabetes. However, besides its metabolic actions, glucagon also influences kidney function. The glucago...
متن کاملGenetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension.
In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 126 5 شماره
صفحات -
تاریخ انتشار 2016