Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis.
نویسندگان
چکیده
OBJECTIVE Previously, we demonstrated that activated inducible NO synthase (iNOS)-expressing foam cells in human carotid plaques often produce autofluorescent (per)oxidized lipids (ceroid). Here, we investigate whether intraplaque microvessels can provide foam cells with lipids and trigger macrophage activation. METHODS AND RESULTS Microvessels (von Willebrand factor [vWf] immunoreactivity), activated macrophages (iNOS immunoreactivity), and ceroid were systematically mapped in longitudinal sections of 15 human carotid endarterectomy specimens. An unbiased hierarchical cluster analysis classified vascular regions into 2 categories. One type with normal vWf expression and without inflammatory cells was seen, and another type with cuboidal endothelial cells, perivascular vWf deposits, and iNOS and ceroid-containing foam cells was seen in 4 (27%) of 15 plaques. The perivascular foam cells frequently contained platelets (glycoprotein Ibalpha) and erythrocytes (hemoglobin, iron), pointing to microhemorrhage/thrombosis and subsequent phagocytosis. Similar lipid-containing cells, expressing both ceroid and iNOS, were generated in atherosclerosis-free settings by incubating murine J774 macrophages with platelets or oxidized erythrocytes and also in vivo in organizing thrombi in normocholesterolemic rabbits. CONCLUSIONS Focal intraplaque microhemorrhages initiate platelet and erythrocyte phagocytosis, leading to iron deposition, macrophage activation, ceroid production, and foam cell formation. Neovascularization, besides supplying plaques with leukocytes and lipoproteins, can thus promote focal plaque expansion when microvessels become thrombotic or rupture prone.
منابع مشابه
Platelet phagocytosis and processing of beta-amyloid precursor protein as a mechanism of macrophage activation in atherosclerosis.
In human occluded saphenous vein grafts, we previously demonstrated cytotoxic foam cells, presumably derived from macrophages engulfing platelets. In the present study, we investigated whether platelet phagocytosis occurs in human atherosclerotic plaques, whether this activates macrophages, and whether the platelet constituent, amyloid precursor protein (APP), was involved. Immunohistochemistry...
متن کاملComparison of Apoptosis Detection Markers Combined with Macrophage Immunostaining to Study Phagocytosis of Apoptotic Cells in Situ
Efficient phagocytosis of cells undergoing apoptosis by macrophages is important to prevent immunological responses and development of chronic inflammatory disorders such as systemic lupus erythematosus, cystic fibrosis and atherosclerosis. To study phagocytosis of apoptotic cells (AC) by macrophages in tissue, we validated different apoptosis markers (DNA fragmentation, caspase-3 activation an...
متن کاملParaoxonase 2 Induces a Phenotypic Switch in Macrophage Polarization Favoring an M2 Anti-Inflammatory State
Inflammatory processes are involved in atherosclerosis development. Macrophages play a major role in the early atherogenesis, and they are present in the atherosclerotic lesion in two phenotypes: proinflammatory (M1) or anti-inflammatory (M2). Paraoxonase 2 (PON2) is expressed in macrophages, and it was shown to protect against atherosclerosis. Thus, the aim of our study was to analyze the dire...
متن کاملEffect of non-steroidal anti-inflammatory drugs on amyloid-beta formation and macrophage activation after platelet phagocytosis.
Recently, we showed that platelet phagocytosis occurs in human atherosclerotic plaques and leads to foam cell formation. Platelet phagocytosis, resulting in macrophage activation and iNOS induction, was associated with the formation of amyloid-beta peptide (Abeta) via proteolytic cleavage of platelet-derived amyloid precursor protein (APP), possibly by secretases. To test the involvement of gam...
متن کاملStatin inhibition of Fc receptor-mediated phagocytosis by macrophages is modulated by cell activation and cholesterol.
OBJECTIVES An inflammatory response to altered lipoproteins that accumulate in the arterial wall is a major component of the pathogenesis of atherosclerosis. Statins reduce plasma levels of low-density lipoprotein (LDL) and are effective treatments for atherosclerosis. It is hypothesized that they also modulate inflammation. The aim of this study was to examine whether lovastatin inhibits macro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2003