P-[2-(4-hydroxyphenyl)-2-oxo]ethyl ATP for the Rapid Activation of the Na,K-ATPase

نویسندگان

  • Sven Geibel
  • Andreas Barth
  • Sabine Amslinger
  • Andreas H. Jung
  • Christiane Burzik
  • Ronald J. Clarke
  • Richard S. Givens
  • Klaus Fendler
چکیده

P-[2-(4-hydroxyphenyl)-2-oxo]ethyl ATP (pHP-caged ATP) has been investigated for its application as a phototrigger for the rapid activation of electrogenic ion pumps. The yield of ATP after irradiation with a XeCl excimer laser (l 5 308 nm) was determined at pH 6.0–7.5. For comparison, the photolytic yields of P-[1-(2-nitrophenyl)]ethyl ATP (NPE-caged ATP) and P-[1,2-diphenyl-2-oxo]ethyl ATP (desyl-caged ATP) were also measured. It was shown that at l 5 308 nm pHP-caged ATP is superior to the other caged ATP derivatives investigated in terms of yield of ATP after irradiation. Using time-resolved single-wavelength IR spectroscopy, we determined a lower limit of 10 s for the rate constant of release of ATP from pHP-caged ATP at pH 7.0. Like NPE-caged ATP, pHP-caged ATP and desyl-caged ATP bind to the Na,KATPase and act as competitive inhibitors of ATPase function. Using pHP-caged ATP, we investigated the charge translocation kinetics of the Na,K-ATPase at pH 6.2–7.4. The kinetic parameters obtained from the electrical measurements are compared to those obtained with a technique that does not require caged ATP, namely parallel stopped-flow experiments using the voltage-sensitive dye RH421. It is shown that the two techniques yield identical results, provided the inhibitory properties of the caged compound are taken into account. Our results demonstrate that under physiological (pH 7.0) and slightly basic (pH 7.5) or acidic (pH 6.0) conditions, pHP-caged ATP is a rapid, effective, and biocompatible phototrigger for ATP-driven biological systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P(3)-[2-(4-hydroxyphenyl)-2-oxo]ethyl ATP for the rapid activation of the Na(+),K(+)-ATPase.

P(3)-[2-(4-hydroxyphenyl)-2-oxo]ethyl ATP (pHP-caged ATP) has been investigated for its application as a phototrigger for the rapid activation of electrogenic ion pumps. The yield of ATP after irradiation with a XeCl excimer laser (lambda = 308 nm) was determined at pH 6.0-7.5. For comparison, the photolytic yields of P(3)-[1-(2-nitrophenyl)]ethyl ATP (NPE-caged ATP) and P(3)-[1, 2-diphenyl-2-o...

متن کامل

Fast transient currents in Na,K-ATPase induced by ATP concentration jumps from the P3-[1-(3',5'-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP.

Electrogenic ion transport by Na,K-ATPase was investigated by analysis of transient currents in a model system of protein-containing membrane fragments adsorbed to planar lipid bilayers. Sodium transport was triggered by ATP concentration jumps in which ATP was released from an inactive precursor by an intense near-UV light flash. The method has been used previously with the P3-1-(2-nitrophenyl...

متن کامل

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

Synergistically stimulated (Na+,K+)-adenosine triphosphatase from plasma membrane of a marine diatom.

An ATP-hydrolyzing activity with the properties of a Mg(2+)-dependent (Na(+),K(+))-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from a 20-fold purified plasma membrane fraction of the marine diatom, Nitzschia alba is described. The basal activity requires Mg(2+) and further stimulation by Na(+) or Na(+) plus K(+) is dependent on the presence of Mg(2+); Mn(2+) or Co(2+) can partially substitute for...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000