Coamplification at lower denaturation temperature-PCR increases mutation-detection selectivity of TaqMan-based real-time PCR.

نویسندگان

  • Jin Li
  • Lilin Wang
  • Pasi A Jänne
  • G Mike Makrigiorgos
چکیده

BACKGROUND DNA genotyping with mutation-specific TaqMan(R) probes (Applied Biosystems) is broadly used in detection of single-nucleotide polymorphisms but is less so for somatic mutations because of its limited selectivity for low-level mutations. We recently described coamplification at lower denaturation temperature-PCR (COLD-PCR), a method that amplifies minority alleles selectively from mixtures of wild-type and mutation-containing sequences during the PCR. We demonstrate that combining COLD-PCR with TaqMan technology provides TaqMan genotyping with the selectivity needed to detect low-level somatic mutations. METHODS Minor-groove binder-based or common TaqMan probes were designed to contain a nucleotide that matches the desired mutation approximately in the middle of the probe. The critical denaturation temperature (T(c)) of each amplicon was then experimentally determined. COLD-PCR/TaqMan genotyping was performed in 2 steps: denaturation at the T(c), followed by annealing and extension at a single temperature (fast COLD-PCR). The threshold cycle was used to identify mutations on the basis of serial dilutions of mutant DNA into wild-type DNA and to identify TP53 (tumor protein p53) and EGFR [epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)] mutations in tumors. RESULTS COLD-PCR/TaqMan genotyping identified G>A mutations within TP53 exon 8 (codon 273 mutation hot spot) and C>T mutations within the EGFR gene (drug-resistance mutation T790M) with a selectivity improvement of 15- to 30-fold over regular PCR/TaqMan genotyping. A second round of COLD-PCR/TaqMan genotyping improved the selectivity by another 15- to 30-fold and enabled detection of 1 mutant in 2000 wild-type alleles. Use of COLD-PCR/TaqMan genotyping allowed quantitative identification of low-level TP53 and T790 mutations in colon tumor samples and in non-small-cell lung cancer cell lines treated with kinase inhibitors. CONCLUSIONS The major improvement in selectivity provided by COLD-PCR enables the popular TaqMan genotyping method to become a powerful tool for detecting low-level mutations in clinical samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature-tolerant COLD-PCR reduces temperature stringency and enables robust mutation enrichment.

BACKGROUND Low-level mutations in clinical tumor samples often reside below mutation detection limits, thus leading to false negatives that may impact clinical diagnosis and patient management. COLD-PCR (coamplification at lower denaturation temperature PCR) is a technology that magnifies unknown mutations during PCR, thus enabling downstream mutation detection. However, a practical difficulty ...

متن کامل

Enriching mutant sequences by modulating the denaturation time during PCR.

For minor and major DNA alleles, coamplification at lower denaturation temperature-PCR (COLDPCR) selectively enriches minority alleles from mixtures of wild-type and mutation-containing sequences without a priori knowledge of the type or position of a mutation within a sequence (1 ). Since its inception (2 ), COLD-PCR has been employed in a variety of applications, including cancer, prenatal di...

متن کامل

Enriching Mutant Sequences by Modulating the Denaturation Time during PCR

For minor and major DNA alleles, coamplification at lower denaturation temperature-PCR (COLDPCR) selectively enriches minority alleles from mixtures of wild-type and mutation-containing sequences without a priori knowledge of the type or position of a mutation within a sequence (1 ). Since its inception (2 ), COLD-PCR has been employed in a variety of applications, including cancer, prenatal di...

متن کامل

DMSO Increases Mutation Scanning Detection Sensitivity of High-Resolution Melting in Clinical Samples.

BACKGROUND Mutation scanning provides the simplest, lowest-cost method for identifying DNA variations on single PCR amplicons, and it may be performed before sequencing to avoid screening of noninformative wild-type samples. High-resolution melting (HRM) is the most commonly used method for mutation scanning. With PCR-HRM, however, mutations less abundant than approximately 3%-10% that can stil...

متن کامل

Single-tube, highly parallel mutation enrichment in cancer gene panels by use of temperature-tolerant COLD-PCR.

BACKGROUND Multiplexed detection of low-level mutations presents a technical challenge for many technologies, including cancer gene panels used for targeted-resequencing. Analysis of mutations below approximately 2%-5% abundance in tumors with heterogeneity, samples with stromal contamination, or biofluids is problematic owing to increased noise from sequencing errors. Technologies that reduce ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical chemistry

دوره 55 4  شماره 

صفحات  -

تاریخ انتشار 2009