A Single-Dose PLGA Encapsulated Protective Antigen Domain 4 Nanoformulation Protects Mice against Bacillus anthracis Spore Challenge
نویسندگان
چکیده
Bacillus anthracis, the etiological agent of anthrax, is a major bioterror agent. Vaccination is the most effective prophylactic measure available against anthrax. Currently available anthrax vaccines have issues of the multiple booster dose requirement, adjuvant-associated side effects and stability. Use of biocompatible and biodegradable nanoparticles to deliver the antigens to immune cells could solve the issues associated with anthrax vaccines. We hypothesized that the delivery of a stable immunogenic domain 4 of protective antigen (PAD4) of Bacillus anthracis encapsulated in a poly (lactide-co-glycolide) (PLGA)--an FDA approved biocompatible and biodegradable material, may alleviate the problems of booster dose, adjuvant toxicity and stability associated with anthrax vaccines. We made a PLGA based protective antigen domain 4 nanoparticle (PAD4-NP) formulation using water/oil/water solvent evaporation method. Nanoparticles were characterized for antigen content, morphology, size, polydispersity and zeta potential. The immune correlates and protective efficacy of the nanoparticle formulation was evaluated in Swiss Webster outbred mice. Mice were immunized with single dose of PAD4-NP or recombinant PAD4. The PAD4-NP elicited a robust IgG response with mixed IgG1 and IgG2a subtypes, whereas the control PAD4 immunized mice elicited low IgG response with predominant IgG1 subtype. The PAD4-NP generated mixed Th1/Th2 response, whereas PAD4 elicited predominantly Th2 response. When we compared the efficacy of this single-dose vaccine nanoformulation PAD4-NP with that of the recombinant PAD4 in providing protective immunity against a lethal challenge with Bacillus anthracis spores, the median survival of PAD4-NP immunized mice was 6 days as compared to 1 day for PAD4 immunized mice (p<0.001). Thus, we demonstrate, for the first time, the possibility of the development of a single-dose and adjuvant-free protective antigen based anthrax vaccine in the form of PAD4-NP. Further work in this direction may produce a better and safer candidate anthrax vaccine.
منابع مشابه
Evaluation the Efficacy of Anthrax Vaccine against Challenge with a Highly Virulent Strain of Bacillus anthracis Isolated from Soil in Sheep, Goats and Guinea Pigs in Iran
Protection of animals immunized against Bacillus anthracis is usually demonstrated by challenging with an appropriate dose of a strain of Bacillus anthracis that is lethal to unvaccinated animals inoculated at the same time. In this study the protective efficacy in anthrax vaccine (34F2 sterne strain spore) was evaluated in sheep, goats and guinea pigs challenged with subcutaneous inoculation...
متن کاملSalmonella enterica serovar typhimurium expressing a chromosomally integrated copy of the Bacillus anthracis protective antigen gene protects mice against an anthrax spore challenge.
Protective immunity against infection with Bacillus anthracis is almost entirely based on a response to the protective antigen (PA), the binding moiety for the two other toxin components. We cloned the PA gene into an auxotrophic mutant of Salmonella enterica serovar Typhimurium as a fusion with the signal sequence of the hemolysin (Hly) A gene of Escherichia coli to allow the export of PA via ...
متن کاملMucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice.
Existing licensed anthrax vaccines are administered parenterally and require multiple doses to induce protective immunity. This requires trained personnel and is not the optimum route for stimulating a mucosal immune response. Microencapsulation of vaccine antigens offers a number of advantages over traditional vaccine formulations, including stability without refrigeration and the potential fo...
متن کاملImmunization of mice with formalin-inactivated spores from avirulent Bacillus cereus strains provides significant protection from challenge with Bacillus anthracis Ames.
Bacillus anthracis spores are the infectious form of the organism for humans and animals. However, the approved human vaccine in the United States is derived from a vegetative culture filtrate of a toxigenic, nonencapsulated B. anthracis strain that primarily contains protective antigen (PA). Immunization of mice with purified spore proteins and formalin-inactivated spores (FIS) from a nonencap...
متن کاملAntibody titers of PEG-PLA block copolymer nanosphere containing chimeric recombinant protein of protective antigen and lethal factor of Bacillus anthracis
Introduction: To date, many vaccines have been developed for anthrax but not yet an ideal vaccine. In this study, chimeric protein containing domain 1 lethal factor and domain 4 protective antigens of Bacillus anthracis in copolymer nanocapsules were used to solve the problems caused by existing vaccines and to increase the efficiency of the proposed vaccine. Materials and Methods: In this expe...
متن کامل