On an Enhanced PERSIANN-CCS Algorithm for Precipitation Estimation

نویسندگان

  • MAJID MAHROOGHY
  • VALENTINE G. ANANTHARAJ
  • NICOLAS H. YOUNAN
  • JAMES AANSTOOS
  • KUO-LIN HSU
چکیده

By employing wavelet and selected features (WSF), median merging (MM), and selected curve-fitting (SCF) techniques, the Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) has been improved. The PERSIANN-CCS methodology includes the following four main steps: 1) segmentation of satellite cloud images into cloud patches, 2) feature extraction, 3) classification of cloud patches, and 4) derivation of the temperature–rain-rate (T–R) relationship for every cluster. The enhancements help improve step 2 by employing WSF, and step 4 by employing MM and SCF. For the study area herein, the results show that the enhanced methodology improves the equitable threat score (ETS) of the daily and hourly rainfall estimates mostly in the winter and fall. The ETS percentage improvement is about 20% for the daily (10% for hourly) estimates in the winter, 10% for the daily (8% for hourly) estimates in the fall, and at most 5% for the daily estimates in the summer at some rainfall thresholds. In the winter and fall, the area bias is improved almost at all rainfall thresholds for daily and hourly estimates. However, no significant improvement is obtained in the spring, and the area bias in the summer is also greater than that of the implemented PERSIANN-CCS algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of monthly gridded precipitation data products ERA-Interim, PERSIANN-CDR, PERSIANN-CCS and CRU over Khuzestan province

Deficiency and inappropriate distribution of reengage station is one of challenges faced by researchers in hydrology and climate science. In this research, evaluate the applicability of four gridded precipitation data products ERA-Interim, PERSIANN-CDR, PERSIANN-CCS and CRU as a supplement or substitute for ground data in a monthly time scales. This assessment was done by comparison with observ...

متن کامل

Evaluation of PERSIANN-CCS Rainfall Measurement Using the NAME Event Rain Gauge Network

Robust validation of the space–time structure of remotely sensed precipitation estimates is critical to improving their quality and confident application in water cycle–related research. In this work, the performance of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) precipitation product is evaluated agai...

متن کامل

Flood Forecasting and Inundation Mapping Using HiResFlood-UCI and Near-Real-Time Satellite Precipitation Data: The 2008 Iowa Flood

Floods are among the most devastating natural hazards in society. Flood forecasting is crucially important in order to provide warnings in time to protect people and properties from such disasters. This research applied the high-resolution coupled hydrologic–hydraulic model from the University of California, Irvine, named HiResFlood-UCI, to simulate the historical 2008 Iowa flood. HiResFlood-UC...

متن کامل

Evaluation of High-Resolution Precipitation Estimates from Satellites during July 2012 Beijing Flood Event Using Dense Rain Gauge Observations

Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation c...

متن کامل

Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH) were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012