EEG gamma-band synchronization in visual coding from childhood to old age: evidence from evoked power and inter-trial phase locking.
نویسندگان
چکیده
OBJECTIVE To investigate lifespan age differences in neuronal mechanisms of visual coding in the context of perceptual discrimination. METHODS We recorded EEG from 17 children (10-12 years), 16 younger adults (20-26 years), and 17 older adults (70-76 years) during a simple choice-reaction task requiring discrimination of squares and circles of different sizes. We examined age-group differences in the effect of stimulus size on early ERP components, evoked gamma-band power, and inter-trial phase-stability in the gamma band as assessed by the phase-locking index (PLI). RESULTS In the absence of age differences in discrimination accuracy, we observed reliable age differences in patterns of ERP, evoked gamma power, and PLI. P1 and N1 peak amplitudes were larger and the peak latencies longer in children than in adults. Children also showed lower levels of evoked power and PLI than adults. Older adults showed smaller increments in evoked power with increasing stimulus size than younger adults, but similar amounts of phase locking for small- and medium-sized stimuli as younger adults. CONCLUSIONS The relative importance of different coding mechanisms in early visual areas changes from childhood to old age. Due to synaptic overproduction and immature myelination, the visual system of children is less entrained by incoming information, resulting in less synchronized neuronal responses. Adults primarily rely on sparse representations formed through experience-dependent temporally synchronized neuronal interactions. In old age, senescent decline in neuronal density and neurotransmitter availability further increase the reliance on temporally synchronized processing. SIGNIFICANCE Findings from this study defy the notion that sensory aging consists in a reversal of sensory development in childhood, and point to a high degree of age specificity in mechanisms of visual coding.
منابع مشابه
Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism
BACKGROUND Gamma-band oscillations recorded from human electrophysiological recordings, which may be associated with perceptual binding and neuronal connectivity, have been shown to be altered in people with autism. Transient auditory gamma-band responses, however, have not yet been investigated in autism or in the first-degree relatives of persons with the autism. METHODS We measured transie...
متن کاملAberrant EEG responses to gamma-frequency visual stimulation in schizophrenia.
Disturbance in the integration of visual information is one of the hallmarks of schizophrenia. In the spatial domain, visual integration is compromised, resulting in impaired perceptual grouping and contour integration. In the time domain, in contrast, visual integration is enhanced, as manifested by increased backward masking and lower ability of patients to detect successively presented visua...
متن کاملEvent-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia.
An increasing number of schizophrenia studies have been examining electroencephalography (EEG) data using time-frequency analysis, documenting illness-related abnormalities in neuronal oscillations and their synchronization, particularly in the gamma band. In this article, we review common methods of spectral decomposition of EEG, time-frequency analyses, types of measures that separately quant...
متن کاملLifespan differences in cortical dynamics of auditory perception.
Using electroencephalographic recordings (EEG), we assessed differences in oscillatory cortical activity during auditory-oddball performance between children aged 9-13 years, younger adults, and older adults. From childhood to old age, phase synchronization increased within and between electrodes, whereas whole power and evoked power decreased. We conclude that the cortical dynamics of perceptu...
متن کاملFrontal phasic and oscillatory generators of the N30 somatosensory evoked potential
The N30 component of somatosensory evoked potentials has been recognized as a crucial index of brain sensorimotor processing and has been increasingly used clinically. Previously, we have shown that the N30 is accompanied by both an increase of the power spectrum of the ongoing beta-gamma EEG (event related synchronization, ERS) and by a reorganization (phase-locking) of the spontaneous phase o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 120 7 شماره
صفحات -
تاریخ انتشار 2009