Tight Bounds on the Complexity of the Apostolico-Giancarlo Algorithm
نویسندگان
چکیده
The Apostolico-Giancarlo string-matching algorithm is analyzed precisely. We give a tight upper bound of 3 2 n text characters comparisons when searching for a pattern in a text of length n. We exhibit a family of patterns and texts reaching this bound. We also provide a slightly improved version of the algorithm.
منابع مشابه
Tight bounds on the complexity of theApostolico
The Apostolico-Giancarlo string-matching algorithm is analyzed precisely. We give a tight upper bound of 3 2 n text characters comparisons when searching for a pattern in a text of length n. We exhibit a family of patterns and texts reaching this bound. We also provide a slightly improved version of the algorithm.
متن کاملTight bounds on the complexity of the Apostolico - GiancarloalgorithmMaxime
The Apostolico-Giancarlo string-matching algorithm is analyzed precisely. We give a tight upper bound of 3 2 n text character comparisons when searching for a pattern in a text of length n. We exhibit a family of patterns and texts reaching this bound. We also provide a slightly improved version of the algorithm.
متن کاملA unifying look at the Apostolico-Giancarlo string-matching algorithm
String matching is the problem of finding all the occurrences of a pattern in a text. We present a new method to compute the combinatorial shift function (“matching shift”) of the well-known Boyer–Moore string matching algorithm. This method implies the computation of the length of the longest suffixes of the pattern ending at each position in this pattern. These values constituted an extra-pre...
متن کاملAn Optimal O(log log N)-Time Parallel Algorithm for Detecting All Squares in a String
An optimal O(loglogn) time concurrent-read concurrent-write parallel algorithm for detecting all squares in a string is presented. A tight lower bound shows that over general alphabets this is the fastest possible optimal algorithm. When p processors are available the bounds become 0(fnl;gnl +loglogrl+p/n12p).
متن کاملSpeeding Up Dynamic Programming without Omitting any Optimal Solution and Some Applications in Molecular Biology
We extend the algorithm of Galil and Giancarlo, which speeds up dynamic programming in the case of concave cost functions, such that a compact representation of all optimal solutions is computed. Compared to the Galil-Giancarlo algorithm our time bound grows only by a small constant factor. With a compact representation, we develop eecient algorithms for the solution of problems in molecular bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 63 شماره
صفحات -
تاریخ انتشار 1997